977 resultados para fungal growth


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microbial interactions depend on a range of biotic and environmental variables, and are both dynamic and unpredictable. For some purposes, and under defined conditions, it is nevertheless imperative to evaluate the inhibitory efficacy of microbes, such as those with potential as biocontrol agents. We selected six, phylogenetically diverse microbes to determine their ability to inhibit the ascomycete Fusarium
coeruleum, a soil-dwelling pathogen of potato tubers that causes the storage disease dry rot. Interaction assays, where colony development was quantified (for both fungal pathogen and potential control agents), were therefore carried out on solid media. The key parameters that contributed to, and were indicative of, inhibitory efficacy were identified as: fungal growth-rates (i) prior to contact with the biocontrol
agent and (ii) if/once contact with the biocontrol agent was established (i.e. in the zone of mixed
culture), and (iii) the ultimate distance traveled by the fungal mycelium. It was clear that there was no correlation between zones of fungal inhibition and the overall reduction in the extent of fungal colony development. An inhibition coefficient was devised which incorporated the potential contributions of distal inhibition of fungal growth-rate; prevention of mycelium development in the vicinity of the biocontrol
agent; and ability to inhibit plant-pathogen growth-rate in the zone of mixed culture (in a ratio of 2:2:1). The values derived were 84.2 for Bacillus subtilis (QST 713), 74.0 for Bacillus sp. (JC12GB42), 30.7 for Pichia anomala (J121), 19.3 for Pantoea agglomerans (JC12GB34), 13.9 for Pantoea sp. (S09:T:12), and
21.9 (indicating a promotion of fungal growth) for bacterial strain (JC12GB54). This inhibition coefficient, with a theoretical maximum of 100, was consistent with the extent of F. coeruleum-colony development (i.e. area, in cm2) and assays of these biocontrol agents carried out previously against Fusarium
spp., and other fungi. These findings are discussed in relation to the dynamics and inherent complexity of natural ecosystems, and the need to adapt models for use under specific sets of conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whereas osmotic stress response induced by solutes has been well-characterized in fungi, less is known about the other activities of environmentally ubiquitous substances. The latest methodologies to define, identify and quantify chaotropicity, i.e. substance-induced destabilization of macromolecular systems, now enable new insights into microbial stress biology (Cray et al. in Curr Opin Biotechnol 33:228–259, 2015a, doi:10.​1016/​j.​copbio.​2015.​02.​010; Ball and Hallsworth in Phys Chem Chem Phys 17:8297–8305, 2015, doi:10.​1039/​C4CP04564E; Cray et al. in Environ Microbiol 15:287–296, 2013a, doi:10.​1111/​1462-2920.​12018). We used Aspergillus wentii, a paradigm for extreme solute-tolerant fungal xerophiles, alongside yeast cell and enzyme models (Saccharomyces cerevisiae and glucose-6-phosphate dehydrogenase) and an agar-gelation assay, to determine growth-rate inhibition, intracellular compatible solutes, cell turgor, inhibition of enzyme activity, substrate water activity, and stressor chaotropicity for 12 chemically diverse solutes. These stressors were found to be: (i) osmotically active (and typically macromolecule-stabilizing kosmotropes), including NaCl and sorbitol; (ii) weakly to moderately chaotropic and non-osmotic, these were ethanol, urea, ethylene glycol; (iii) highly chaotropic and osmotically active, i.e. NH4NO3, MgCl2, guanidine hydrochloride, and CaCl2; or (iv) inhibitory due primarily to low water activity, i.e. glycerol. At ≤0.974 water activity, Aspergillus cultured on osmotically active stressors accumulated low-M r polyols to ≥100 mg g dry weight−1. Lower-M r polyols (i.e. glycerol, erythritol and arabitol) were shown to be more effective for osmotic adjustment; for higher-M r polyols such as mannitol, and the disaccharide trehalose, water-activity values for saturated solutions are too high to be effective; i.e. 0.978 and 0.970 (25 ºC). The highly chaotropic, osmotically active substances exhibited a stressful level of chaotropicity at physiologically relevant concentrations (20.0–85.7 kJ kg−1). We hypothesized that the kosmotropicity of compatible solutes can neutralize chaotropicity, and tested this via in-vitro agar-gelation assays for the model chaotropes urea, NH4NO3, phenol and MgCl2. Of the kosmotropic compatible solutes, the most-effective protectants were trimethylamine oxide and betaine; but proline, dimethyl sulfoxide, sorbitol, and trehalose were also effective, depending on the chaotrope. Glycerol, by contrast (a chaotropic compatible solute used as a negative control) was relatively ineffective. The kosmotropic activity of compatible solutes is discussed as one mechanism by which these substances can mitigate the activities of chaotropic stressors in vivo. Collectively, these data demonstrate that some substances concomitantly induce chaotropicity-mediated and osmotic stresses, and that compatible solutes ultimately define the biotic window for fungal growth and metabolism. The findings have implications for the validity of ecophysiological classifications such as ‘halophile’ and ‘polyextremophile’; potential contamination of life-support systems used for space exploration; and control of mycotoxigenic fungi in the food-supply chain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose
– Concern of the deterioration of indoor environmental quality as a result of energy efficient building design strategies is growing. Apprehensions of the effect of airtight, super insulated envelopes, the reduction of infiltration, and the reliance on mechanical systems to provide adequate ventilation (air supply) is promoting emerging new research in this field. The purpose of this paper is to present the results of an indoor air quality (IAQ) and thermal comfort investigation in UK energy efficient homes, through a case study investigation.

Design/methodology/approach
– The case study dwellings consisted of a row of six new-build homes which utilize mechanical ventilation with heat recovery (MVHR) systems, are built to an average airtightness of 2m3/m2/hr at 50 Pascal’s, and constructed without a central heating system. Physical IAQ measurements and occupant interviews were conducted during the summer and winter months over a 24-hour period, to gain information on occupant activities, perception of the interior environment, building-related health and building use.

Findings
– The results suggest inadequate IAQ and perceived thermal comfort, insufficient use of purge ventilation, presence of fungal growth, significant variances in heating patterns, occurrence of sick building syndrome symptoms and issues with the MVHR system.

Practical implications
– The findings will provide relevant data on the applicability of airtight, mechanically ventilated homes in a UK climate, with particular reference to IAQ.

Originality/value
– IAQ data of this nature is essentially lacking, particularly in the UK context. The findings will aid the development of effective sustainable design strategies that are appropriate to localized climatic conditions and sensitive to the health of building occupants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese descreve diversas estratégias de preparação assim como a caracterização de nanocompósitos com base em distintos biopolímeros. Em particular foi estudada a incorporação de nanopartículas (NPs) metálicas, nomeadamente de Ag, Cu e Au. Estes nanomateriais apresentam um potencial prático enorme em diversas áreas, no entanto foi investigada especificamente a sua aplicação como materiais antimicrobianos. No primeiro capítulo apresenta-se uma revisão bibliográfica, onde são realçados os principais tópicos discutidos ao longo da tese. Inicialmente apresenta-se uma contextualização deste trabalho sendo seguidamente apresentadas algumas considerações sobre nanocompósitos e o seu impacto tecnológico atual. Em seguida, descrevem-se as vantagens do uso de NPs como cargas nos materiais compósitos especificamente no caso de bionanocompósitos. Foi focado o uso da celulose como matriz uma vez que foi o composto “base” usado neste trabalho. Fez-se a descrição exaustiva das metodologias existentes na literatura para a preparação dos nanocompósitos celulósicos com diferentes NPs metálicas assim como das respetivas aplicações. Dentro das aplicações, foi dado especial destaque às propriedades antimicrobianas dos materiais preparados seja a nível da sua atividade antibacteriana ou antifúngica. Esta introdução privilegia o trabalho relacionado diretamente com os sistemas descritos nos capítulos subsequentes. No segundo capítulo apresentam-se os resultados obtidos para nanocompósitos de prata em matriz celulósica. Através do uso de metodologias, tais como a síntese in situ e a pós-deposição, foram preparados diversos materiais usando dois substratos celulósicos distintos nomeadamente a celulose vegetal e bacteriana. Estes nanocompósitos foram caracterizados em termos da sua morfologia e composição química, verificando-se a importância destas características na sua atividade antibacteriana. Foi verificado que nanocompósitos com teores de Ag de 5 x 10-4 (% m/m) são suficientes para obter atividade antibacteriana. A libertação de Ag(I) foi estudada em alguns destes materiais de modo a tentar perceber o mecanismo subjacente a este tipo de nanocompósitos. No terceiro capítulo é apresentado o estudo de NPs coloidais de Ag e Au como cargas para a preparação de nanocompósitos à base de quitosano nãomodificado e modificado quimicamente (derivado solúvel em água e derivado anfifílico). Foram preparados filmes finos de espessura de 9-14 μm, caracterizando-se as suas propriedades óticas e antibacterianas. As propriedades óticas foram ajustadas, quer pela variação do teor de NPs de Ag (0,3-3,9% m/m) ou pela utilização de amostras de NPs com distribuição de tamanho de partícula distinta. Foi investigada a atividade antibacteriana tanto para bactérias Gram-negativas (Klebsiella pneumoniae e Escherichia coli) como para Gram-positivas (Staphylococcus aureus). Para nanocompósitos preparados com o quitosano não modificado verificou-se uma dependência em função do teor de Ag. No caso do uso de derivados modificados, os materiais preparados mostraram uma eficiência superior, mesmo sem NPs de Ag. No quarto capítulo é apresentada a síntese e caracterização de nanocompósitos de pululano e NPs de Ag. Neste estudo é avaliada a atividade antifúngica dos filmes compósitos preparados contra o Aspergillus niger usando protocolos padrão. Estes materiais foram preparados na forma de filmes (66-74 μm de espessura) por evaporação de solvente da mistura de pululano e coloides de Ag. Foi observado o aumento da inibição do fungo na presença dos nanocompósitos, tendo sido pela primeira vez mostrado o efeito disruptivo destes materiais sobre os esporos do A. niger através da análise das imagens de SEM. Este efeito ocorre na presença dos filmes devido à presença das cargas de NPs de Ag dispersas no pululano. O desenvolvimento de materiais de papel com NPs de Cu é um desafio devido à propensão destas espécies em oxidar sob condições ambiente. No quinto capítulo é descrita pela primeira vez o estudo comparativo do crescimento e estabilidade de NPs de Cu em celulose vegetal e bacteriana. Para além disso foi avaliado o uso de nanoestruturas com diferentes dimensionalidades como cargas, nomeadamente nanoesferas e nanofios. Foi observado que o uso de nanofios aumenta a resistência à oxidação destes nanocompósitos para tempos de exposição ao ar mais prolongados. As matrizes celulósicas apresentam comportamento distinto no crescimento e/ou adsorção das NPs de Cu. A celulose bacteriana foi o substrato mais eficiente para retardar a oxidação das NPs. A atividade antibacteriana destes nanocompósitos foi avaliada. Ao longo desta dissertação são apresentados métodos distintos para a obtenção de nanocompósitos com base em biopolímeros e NPs metálicas. Estes estudos permitiram não só a preparação de novos nanocompósitos mas também compreender e otimizar os mecanismos subjacentes à sua preparação. Ao mesmo tempo, este trabalho contribuiu para a transferência de tecnologia e conhecimento entre a área da Nanotecnologia e a área dos materiais derivados de fontes renováveis. As propriedades apresentadas por estes nanomateriais mostraram a sua possível aplicação como novos materiais antimicrobianos, no entanto é possível antecipar futuras aplicações em outras áreas tecnológicas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cork stopper manufacturing process includes an operation, known as stabilisation, by which humid cork slabs are extensively colonised by fungi. The effects of fungal growth on cork are yet to be completely understood and are considered to be involved in the so called “cork taint” of bottled wine. It is essential to identify environmental constraints which define the appearance of the colonising fungal species and to trace their origin to the forest and/or as residents in the manufacturing space. The present article correlates two sets of data, from consecutive years and the same season, of systematic biologic sampling of two manufacturing units, located in the North and South of Portugal. Chrysonilia sitophila dominance was identified, followed by a high diversity of Penicillium species. Penicillium glabrum, found in all samples, was the most frequent isolated species. P. glabrum intra-species variability was investigated using DNA fingerprinting techniques revealing highly discriminative polymorphic markers in the genome. Cluster analysis of P. glabrum data was discussed in relation to the geographical location of strains, and results suggest that P. glabrum arise from predominantly the manufacturing space, although cork resident fungi can also contrib

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When a bloodstream infection (BSI) is suspected, most of the laboratory results-biochemical and haematologic-are available within the first hours after hospital admission of the patient. This is not the case for diagnostic microbiology, which generally takes a longer time because blood culture, which is to date the reference standard for the documentation of the BSI microbial agents, relies on bacterial or fungal growth. The microbial diagnosis of BSI directly from blood has been proposed to speed the determination of the etiological agent but was limited by the very low number of circulating microbes during these paucibacterial infections. Thanks to recent advances in molecular biology, including the improvement of nucleic acid extraction and amplification, several PCR-based methods for the diagnosis of BSI directly from whole blood have emerged. In the present review, we discuss the advantages and limitations of these new molecular approaches, which at best complement the culture-based diagnosis of BSI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Gram negative aerobic flagellated bacterium with fungal growth inhibitory properties was isolated from a culture of Trichoderma harzianum. According to its cultural characteristics and biochemical properties it was identified as a strain of Alcaligenes (aeca/is Castellani and Chalmers. Antisera prepared in Balbc mice injected with live and heat-killed bacterial cells gave strong reactions with the homologous immunogen and with ATCC 15554, the type strain of A. taeca/is, but not with Escherichia coli or Enterobacter aerogens in immunoprecipitation and dot immunobinding assays. Growth of Botrytis cinerea Pers. and several other fungi was significantly affected when co-cultured with A. taeca/is on solid media. Its detrimental effect on germination and growth of B. cinerea has been found to be associated with antifungal substances produced by the bacterium and released into the growth medium. A biotest for the antibiotic substances, based on their inhibitory effect on germination of B. cinerea conidia, was developed. This biotest was used to study the properties of these substances, the conditions in which they are produced, and to monitor the steps of their separation during extraction procedures. It has been found that at least two substances could be involved in the antagonistic interaction. One of these is a basic volatile substance and has been identified as ammonia. The other substance is a nonvolatile, dialysable, heat stable, polar compound released into the growth medium. After separation of growth medium samples by Sephadex G-10 column chromatography a single peak with a molecular weight below 700 Daltons exhibited inhibitory activity. From its behaviour in electrophoretic separation in agarose gels it seems that this is a neutral or slightly positively charged.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In dual cultures, the supernatant filtrate of the biological control agent Bacillus subtilis was evaluated against (Fusarium oxysporum f.sp. lentis) the causal organism of lentil vascular wilt. The antagonistic activity was evaluated as percent reduction of fungal growth (certainly due, in part, to the antifungal metabolites produced by the antagonistic bacterium). The in-vitro experiments showed that B. subtilis filtrate, whether solid or liquid media, had a strong inhibiting activity on the spore germination and mycelial growth of F. oxysporum f. sp. lentis. In a glasshouse experiment, soil was drenched with B. subtilis filtrate at 30 ml/kg (vol/wt) around seedlings of a susceptible lentil line (ILL 4605). In this treatment there was only 31% mortality compared with 100% kill of plants in the control treatment (P≤0.05).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trophallaxis, the transfer of liquid among individuals by oral regurgitation or anal deposition, occurs in many insect groups including ants. The first indication that trophallaxis could occur in leaf cutting ants (Atta sexdens rubropilosa) was made by Autuori in 1942. He reported water collection by this ant species, and highlighted what in those days was an undescribed behavior for this species. In 2005, Da-Silva and Ribeiro presented preliminary results suggesting the existence of trophallaxis in A. sexdens rubropilosa. Here we report on a formal test of the hypothesis of trophallaxis in that species. Our approach was to test ant pairs in which only one individual (Group I) had access to blue-dyed water and the other individual (Group II), a nest-mate, came from a colony dehydrated by offering dry crushed corn for fungal growth. Positive results for trophallaxis were obtained in ants from four colonies and accounted for 33%-46% of all tests in which ants from Group I drank dyed water. These results indicate that trophallaxis occurs in this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

T-cell immunity has been claimed as the main immunoprotective mechanism against Paracoccidioides brasiliensis infection, the most important fungal infection in Latin America. As the initial events that control T-cell activation in paracoccidioidomycosis (PCM) are not well established, we decided to investigate the role of CD28, an important costimulatory molecule for the activation of effector and regulatory T cells, in the immunity against this pulmonary pathogen. Using CD28-deficient (CD28(-/-)) and normal wild-type (WT) C57BL/6 mice, we were able to demonstrate that CD28 costimulation determines in pulmonary paracoccidioidomycosis an early immunoprotection but a late deleterious effect associated with impaired immunity and uncontrolled fungal growth. Up to week 10 postinfection, CD28(-/-) mice presented increased pulmonary and hepatic fungal loads allied with diminished production of antibodies and pro-and anti-inflammatory cytokines besides impaired activation and migration of effector and regulatory T (Treg) cells to the lungs. Unexpectedly, CD28-sufficient mice progressively lost the control of fungal growth, resulting in an increased mortality associated with persistent presence of Treg cells, deactivation of inflammatory macrophages and T cells, prevalent presence of anti-inflammatory cytokines, elevated fungal burdens, and extensive hepatic lesions. As a whole, our findings suggest that CD28 is required for the early protective T-cell responses to P. brasiliensis infection, but it also induces the expansion of regulatory circuits that lately impair adaptive immunity, allowing uncontrolled fungal growth and overwhelming infection, which leads to precocious mortality of mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms that govern the initial interaction between Paracoccidioides brasiliensis, a primary dimorphic fungal pathogen, and cells of the innate immunity need to be clarified. Our previous studies showed that Toll-like receptor 2 (TLR2) and TLR4 regulate the initial interaction of fungal cells with macrophages and the pattern of adaptive immunity that further develops. The aim of the present investigation was to assess the role of MyD88, an adaptor molecule used by TLRs to activate genes of the inflammatory response in pulmonary paracoccidioidomycosis. Studies were performed with normal and MyD88(-/-) C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells. MyD88(-/-) macrophages displayed impaired interaction with fungal yeast cells and produced low levels of IL-12, MCP-1, and nitric oxide, thus allowing increased fungal growth. Compared with wild-type (WT) mice, MyD88(-/-) mice developed a more severe infection of the lungs and had marked dissemination of fungal cells to the liver and spleen. MyD88(-/-) mice presented low levels of Th1, Th2, and Th17 cytokines, suppressed lymphoproliferation, and impaired influx of inflammatory cells to the lungs, and this group of cells comprised lower numbers of neutrophils, activated macrophages, and T cells. Nonorganized, coalescent granulomas, which contained high numbers of fungal cells, characterized the severe lesions of MyD88(-/-) mice; the lesions replaced extensive areas of several organs. Therefore, MyD88(-/-) mice were unable to control fungal growth and showed a significantly decreased survival time. In conclusion, our findings demonstrate that MyD88 signaling is important in the activation of fungicidal mechanisms and the induction of protective innate and adaptive immune responses against P. brasiliensis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to verify the effects of gamma radiation process on the fungal DNA and the application of PCR in the detection of Aspergillus flavus in irradiated maize grains. The samples were inoculated with a toxigenic strain and incubated under controlled conditions of relative humidity, water activity, and temperature for 15 days. After incubation, the samples were treated with gamma radiation with doses of 5 and 10 kGy and individually analyzed. The use of PCR technique showed the presence of DNA bands of Aspergillus flavus in all irradiated samples that showed no fungal growth in agar medium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of different gamma-radiation doses on the growth of Alternaria alternata in artificially inoculated cereal samples. Seeds and grains were divided into four groups: Control Group (not irradiated), and Groups 1, 2 and 3, inoculated with an A. alternata spore suspension (1 x 10(6) spores/mL) and exposed to 2, 5 and 10 kGy, respectively. Serial dilutions of the samples were prepared and seeded on DRBC (dichloran rose bengal chloramphenicol agar) and DCMA (dichloran chloramphenicol malt extract agar) media, after which the number of colony-forming units per gram was determined in each group. In addition, fungal morphology after irradiation was analyzed by scanning electron microscopy (SEM). The results showed that ionizing radiation at a dose of 5 kGy was effective in reducing the growth of A. alternata. However, a dose of 10 kGy was necessary to inhibit fungal growth completely. SEM made it possible to visualize structural alterations induced by the different gamma-radiation doses used. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forty Cryptococcus gattii strains were submitted to antifungal susceptibility testing with fluconazole, itraconazole, amphotericin B and terbinafine. The minimum inhibitory concentration (MIC) ranges were 0.5-64.0 for fluconazole, < 0.015-0.25 for itraconazole, 0.015-0.5 for amphotericin B and 0.062-2.0 for terbinafine. A bioassay for the quantitation of fluconazole in murine brain tissue was developed. Swiss mice received daily injections of the antifungal, and their brains were withdrawn at different times over the 14-day study period. The drug concentrations varied from 12.98 to 44.60 mu g/mL. This assay was used to evaluate the therapy with fluconazole in a model of infection caused by C. gattii. Swiss mice were infected intracranially and treated with fluconazole for 7, 10 or 14 days. The treatment reduced the fungal burden, but an increase in fungal growth was observed on day 14. The MIC for fluconazole against sequential isolates was 16 mu g/mL, except for the isolates obtained from animals treated for 14 days (MIC = 64 mu g/mL). The quantitation of cytokines revealed a predominance of IFN-gamma and IL-12 in the non-treated group and elevation of IL-4 and IL-10 in the treated group. Our data revealed the possibility of acquired resistance during the antifungal drug therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atta sexdens L, ante feed on the Fungus they cultivate on cut leaves inside their nests. The fungus, Leucoagaricus gongylophorus, metabolizes plant polysaccharides, such as xylan, starch, pectin, and cellulose, mediating assimilation of these compounds lay the ants, This metabolic integration may be an important part of the ant-fungus symbiosis, and it involves primarily xylan and starch, both of which support rapid fungal growth. Cellulose seems to be less important for symbiont nutrition, since it is poorly degraded and assimilated by the fungus. Pectin is rapidly degraded but slowly assimilated by L. gongylophorus, and its degradation may occur so that the fungus can more easily access other polysaccharides in the leaves.