930 resultados para frequency selective surfaces
Resumo:
The design of a low loss quasi-optical beam splitter which is required to provide efficient diplexing of the bands 316.5-325.5 GHz and 349.5-358.5 GHz is presented. To minimise the filter insertion loss, the chosen architecture is a three-layer freestanding array of dipole slot elements. Floquet modal analysis and finite element method computer models are used to establish the geometry of the periodic structure and to predict its spectral response. Two different micromachining approaches have been employed to fabricate close packed arrays of 460 mm long elements in the screens that form the basic building block of the 30mm diameter multilayer frequency selective surface. Comparisons between simulated and measured transmission coefficients for the individual dichroic surfaces are used to determine the accuracy of the computer models and to confirm the suitability of the fabrication methods.
Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors
Resumo:
This study presents the use of periodic arrays of freestanding slot frequency-selective screens (FSS) as a means for generating circularly polarised signals from an incident linearly polarised signal at normal incidence to the structure. Measured and simulated results for crossed, linear and various ring slot element shapes in single and double-layer polarisation convertor structures are presented for 10 GHz operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one-layer perforated screen design and that the rate of change is lower than the double-layer structures. An insertion loss of 0.34 dB can be achieved for the split circular ring double-layer periodic array, and of the three topologies presented the hexagonal split-ring polarisation convertor gives the lowest variation of AR with angle of incidence 1.8 dB/45° and 3.6 dB/45° for the single and double-screen FSS, respectively. In addition, their tolerance to angle of incidence variation is presented. The capability of the surfaces reported here as twist polariser or spatial isolator components has been demonstrated with up to -30 dB isolation between incident and re-reflected signals for the double-layer designs being measured. © 2010 The Institution of Engineering and Technology.
Resumo:
Multicode operation in space-time block coded (STBC) multiple input multiple output (MIMO) systems can provide additional degrees of freedom in code domain to achieve high data rates. In such multicode STBC systems, the receiver experiences code domain interference (CDI) in frequency selective fading. In this paper, we propose a linear parallel interference cancellation (LPIC) approach to cancel the CDI in multicode STBC in frequency selective fading. The proposed detector first performs LPIC followed by STBC decoding. We evaluate the bit error performance of the detector and show that it effectively cancels the CDI and achieves improved error performance. Our results further illustrate how the combined effect of interference cancellation, transmit diversity, and RAKE diversity affect the bit error performance of the system.
Resumo:
This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user employs Orthogonal Frequency Division Multiplexing (OFDM). We specifically consider the scenario when the channel between the primary and a secondary user is frequency selective. We develop cooperative sequential detection algorithms based on energy detectors. We modify the detectors to mitigate the effects of some common model uncertainties such as timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. The performance of the proposed algorithms are studied via simulations. We show that the performance of the energy detector is not affected by the frequency selective channel. We also provide a theoretical analysis for some of our algorithms.
Resumo:
Multicode operation in space-time block coded (STBC) multiple input multiple output (MIMO) systems can provide additional degrees of freedom in code domain to achieve high data rates. In such multicode STBC systems, the receiver experiences code domain interference (CDI) in frequency selective fading. In this paper, we propose a linear parallel interference cancellation (LPIC) approach to cancel the CDI in multicode STBC signals in frequency selective fading. The proposed detector first performs LPIC followed by STBC decoding. We present an SINK for the proposed detector. We evaluate the bit error rate (BER) performance of the system, and show that the proposed detector effectively cancels the CDI and achieves improved error performance. Our BER results further illustrate how the combined effect of interference cancellation, transmit diversity, and RAKE diversity affects the performance of the system.
Resumo:
In this paper, we consider the problem of designing minimum mean squared error (MMSE) filterbank precoder and equalizer for multiple input multiple output (MIMO) frequency selective channels. We derive the conditions to be satisfied by the optimal precoder-equalizer pair, and provide an iterative algorithm for solving them. The optimal design is very general, in that it is not constrained by channel dimensions, channel order, channel rank, or the input constellation. We also discuss some pertinent difierences between the filterbank approach and the space-time approach to the design of optimal precoder and equalizer. Simulation results demonstrate that the proposed design performs better than the space-time systems while supporting a higher data rate.
Resumo:
Dual-layer frequency-selective subwavelength grid polarizers on thin-film dielectric substrates are proposed for THz and sub-THz applications. The dual-layer grids possess enhanced (squared) polarizing efficiency at a sequence of discrete frequencies in reflection and within extended frequency bands in transmission as compared to conventional single grids.
Resumo:
A frequency selective surface (FSS) which exploits the dielectric anisotropy of liquid crystals to generate an electronically tunable bandpass filter response at D Band (110-170 GHz) is presented. The device consists of two printed arrays of slot elements which are separated by a 130-mu m thick layer of liquid crystals. A 3% shift in the filter passband occurs when the substrate permittivity is increased by applying a control signal of 10 V. Measured results show that the insertion loss increases from -3.7 dB to -10.4 dB at resonance (134 GHz), thus demonstrating the potential to create a FSS which can be switched between a transmitting and a reflecting structure.
Resumo:
This paper compares the complexity of the sphere decoder (SD) and a previously proposed detection scheme, denoted here as block SD (BSD), when they are applied to the detection of multiple-input multiple-output (MIMO) systems in frequency-selective channels. The complexity of both algorithms depends on their preprocessing and tree search stages. Although the BSD was proposed as a means of greatly reducing the complexity of the preprocessing stage of the SD, no study was done on how the complexity of the tree search stage could be affected by that reduced preprocessing stage. This paper shows, both analytically and through simulation, that the reduction in preprocessing complexity provided by the BSD has the side effect of increasing the complexity of its tree search stage compared to that of the SD, independent of the signal-to-noise ratio (SNR). In addition, this paper shows how sorting the columns of the frequency-selective channel matrix in the SD does not reduce the complexity of the tree search stage, contrary to what occurs in frequency-flat channels.