942 resultados para frameshift mutation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. Hhereditary cystic kidney diseases are a heterogeneous spectrum of disorders leading to renal failure. Clinical features and family history can help to distinguish the recessive from dominant diseases but the differential diagnosis is difficult due the phenotypic overlap. The molecular diagnosis is often the only way to characterize the different forms. A conventional molecular screening is suitable for small genes but is expensive and time-consuming for large size genes. Next Generation Sequencing (NGS) technologies enables massively parallel sequencing of nucleic acid fragments. Purpose. The first purpose was to validate a diagnostic algorithm useful to drive the genetic screening. The second aim was to validate a NGS protocol of PKHD1 gene. Methods. DNAs from 50 patients were submitted to conventional screening of NPHP1, NPHP5, UMOD, REN and HNF1B genes. 5 patients with known mutations in PKHD1 were submitted to NGS to validate the new method and a not genotyped proband with his parents were analyzed for a diagnostic application. Results. The conventional molecular screening detected 8 mutations: 1) the novel p.E48K of REN in a patient with cystic nephropathy, hyperuricemia, hyperkalemia and anemia; 2) p.R489X of NPHP5 in a patient with Senior Loken Syndrome; 3) pR295C of HNF1B in a patient with renal failure and diabetes.; 4) the NPHP1 deletion in 3 patients with medullar cysts; 5) the HNF1B deletion in a patient with medullar cysts and renal hypoplasia and in a diabetic patient with liver disease. The NGS of PKHD1 detected all known mutations and two additional variants during the validation. The diagnostic NGS analysis identified the patient’s compound heterozygosity with a maternal frameshift mutation and a paternal missense mutation besides a not transmitted paternal missense mutation. Conclusions. The results confirm the validity of our diagnostic algorithm and suggest the possibility to introduce this NGS protocol to clinical practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hereditary hair length variability in mice and dogs is caused by mutations within the fibroblast growth factor 5 (FGF5) gene. The aim of this study was to evaluate the feline FGF5 orthologue as a functional candidate gene for the long hair phenotype in cats, which is recessive to short hair. We amplified the feline FGF5 cDNA and characterised two alternatively spliced transcripts by RT-PCR. Comparative cDNA and genomic DNA sequencing of long- and short-haired cats revealed four non-synonymous polymorphisms in the FGF5 coding sequence. A missense mutation (AM412646:c.194C>A) was found in the homozygous state in 25 long-haired Somali, Persian, Maine Coon, Ragdoll and crossbred cats. Fifty-five short-haired cats had zero or one copy of this allele. Additionally, we found perfect co-segregation of the c.194C>A mutation within two independent pedigrees segregating for hair length. A second FGF5 exon 1 missense mutation (AM412646:c.182T>A) was found exclusively in long-haired Norwegian Forest cats. The c.182T>A mutation probably represents a second FGF5 mutation responsible for long hair in cats. In addition to the c.194C>A mutation, a frameshift mutation (AM412646:c.474delT) was found with a high frequency in the long-haired Maine Coon breed. Finally, a missense mutation (AM412646:c.475A>C) was also associated with the long-haired phenotype in some breeds. However, as one short-haired cat was homozygous for this polymorphism, it is unlikely that it has a functional role in the determination of hair length.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in the B1 subunit of the multisubunit vacuolar ATPase cause autosomal-recessive distal renal tubular acidosis and sensorineural deafness. Here, we report a novel frameshift mutation that truncates the C-terminus of the human B1 subunit. This mutant protein failed to assemble with other subunits in the cytosol to form the complex that can be targeted to vesicular structures in mammalian cells. Loss of proton pump activity was demonstrated in a functional complementation assay in B-subunit null yeast. The mutation caused loss of a discreet C-terminal region critical for subunit interaction not related to the C-terminal PDZ motif. Co-expression studies failed to demonstrate dominant negative effects of this truncated mutant over wild-type B1. Analysis of 12 reported B1 subunit missense mutations showed one polymorphic allele had intact pump function, two point mutants had intact assembly but defective proton pumping, and the remaining nine had disrupted assembly with no pump function. One presumed polymorphic allele was actually an inactivating mutation. Our study shows that multiple mechanisms of pump dysfunction result from B1 subunit mutations with a common outcome being defective assembly. Polymorphisms of the B1 subunit in the general population may affect renal acidification and urinary chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adaptations to new pollinators involve multiple floral traits, each requiring coordinated changes in multiple genes. Despite this genetic complexity, shifts in pollination syndromes have happened frequently during angiosperm evolution. Here we study the genetic basis of floral UV absorbance, a key trait for attracting nocturnal pollinators. In Petunia, mutations in a single gene, MYB-FL, explain two transitions in UV absorbance. A gain of UV absorbance in the transition from bee to moth pollination was determined by a cis-regulatory mutation, whereas a frameshift mutation caused subsequent loss of UV absorbance during the transition from moth to hummingbird pollination. The functional differences in MYB-FL provide insight into the process of speciation and clarify phylogenetic relationships between nascent species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FGFRL1 is a member of the fibroblast growth factor receptor (FGFR) family. Similar to the classical receptors FGFR1-FGFR4, it contains three extracellular Ig-like domains and a single transmembrane domain. However, it lacks the intracellular tyrosine kinase domain that would be required for signal transduction, but instead contains a short intracellular tail with a peculiar histidine-rich motif. This motif has been conserved during evolution from mollusks to echinoderms and vertebrates. Only the sequences of FgfrL1 from a few rodents diverge at the C-terminal region from the canonical sequence, as they appear to have suffered a frameshift mutation within the histidine-rich motif. This mutation is observed in mouse, rat and hamster, but not in the closely related rodents mole rat (Nannospalax) and jerboa (Jaculus), suggesting that it has occurred after branching of the Muridae and Cricetidae from the Dipodidae and Spalacidae. The consequence of the frameshift is a deletion of a few histidine residues and an extension of the C-terminus by about 40 unrelated amino acids. A similar frameshift mutation has also been observed in a human patient with a craniosynostosis syndrome as well as in several patients with colorectal cancer and bladder tumors, suggesting that the histidine-rich motif is prone to mutation. The reason why this motif was conserved during evolution in most species, but not in mice, is not clear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies have implicated Ca2+ fluxes in the control of apoptosis but their exact roles in regulating the process remain obscure. Because Ca2+ can serve as a signal for cytochrome c release from isolated mitochondria, we hypothesized that alterations in intracellular Ca2+ compartmentalization might serve as a release signal in whole cells undergoing apoptosis. Exposure of human PC-3 prostate adenocarcinoma cells to staurosporine or DNA damaging agent (doxorubicin) but not to anti-Fas antibody led to early release of Ca2+ from the endoplasmic reticulum and subsequent accumulation of Ca2+ within mitochondria. Both events were blocked in cells stably transfected with Bcl-2 but were not affected by treatment with the pancaspase inhibitor, zVADfmk. The effects of staurosporine were associated with re-localization of Bax from the cytosol to both endoplasmic reticular and mitochondrial membranes. Neither ER Ca 2+ pool depletion nor mitochondrial Ca2+ uptake were observed in DU-145 cells that possess a frameshift mutation in the Bax gene unless wild-type Bax was restored via adenoviral gene transfer. Cytochrome c release and downstream features of apoptosis were attenuated by treatment with an inhibitor of mitochondria) Ca2+ uptake (RU-360). Although, direct pharmacological ER Ca2+ pool emptying in cells treated with thapsigargin did not lead to early cytochrome c release, pretreatment of cells with staurosporine dramatically sensitized mitochondria to thapsigargin-induced cytochrome c release. Together, our data demonstrate that ER-to-mitochondrial Ca2+ fluxes promote cytochrome c release and apoptosis in cells exposed to some (but not all) pro-apoptosic stimuli. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Instability of repetitive sequences, both in intronic sequences and within coding regions, has been demonstrated to be a hallmark of genomic instability in human cancer. Understanding how these mutational events arise may provide an opportunity for prevention or early intervention in cancer development. To study the source of this instability, we have identified a region of the β-lactamase gene that is tolerant to the insertion of fragments of exogenous DNA as large as 1,614 bp with minimal loss of enzyme activity, as determined by antibiotic resistance. Fragments inserted out-of-frame render Escherichia coli sensitive to antibiotic, and compensatory frameshift mutations that restore the reading frame of β-lactamase can be selected on the basis of antibiotic resistance. We have utilized this site to insert a synthetic microsatellite sequence within the β-lactamase gene and selected for mutations yielding frameshifts. This assay provides for detection of one frameshift mutation in a background of 106 wild-type sequences. Mismatch repair deficiency increased the observed frameshift frequency ≈300-fold. Exposure of plasmid containing microsatellite sequences to hydrogen peroxide resulted in frameshift mutations that were localized exclusively to the microsatellite sequences, whereas DNA damage by UV or N-methyl-N′-nitro-N-nitrosoguanidine did not result in enhanced mutagenesis. We postulate that in tumor cells, endogenous production of oxygen free radicals may be a major factor in promoting instability of microsatellite sequences. This β-lactamase assay may provide a sensitive methodology for the detection and quantitation of mutations associated with the development of cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tangier disease is characterized by low serum high density lipoproteins and a biochemical defect in the cellular efflux of lipids to high density lipoproteins. ABC1, a member of the ATP-binding cassette family, recently has been identified as the defective gene in Tangier disease. We report here the organization of the human ABC1 gene and the identification of a mutation in the ABC1 gene from the original Tangier disease kindred. The organization of the human ABC1 gene is similar to that of the mouse ABC1 gene and other related ABC genes. The ABC1 gene contains 49 exons that range in size from 33 to 249 bp and is over 70 kb in length. Sequence analysis of the ABC1 gene revealed that the proband for Tangier disease was homozygous for a deletion of nucleotides 3283 and 3284 (TC) in exon 22. The deletion results in a frameshift mutation and a premature stop codon starting at nucleotide 3375. The product is predicted to encode a nonfunctional protein of 1,084 aa, which is approximately half the size of the full-length ABC1 protein. The loss of a Mnl1 restriction site, which results from the deletion, was used to establish the genotype of the rest of the kindred. In summary, we report on the genomic organization of the human ABC1 gene and identify a frameshift mutation in the ABC1 gene of the index case of Tangier disease. These results will be useful in the future characterization of the structure and function of the ABC1 gene and the analysis of additional ABC1 mutations in patients with Tangier disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) encodes a superantigen that is important for viral infectivity in vivo. To determine whether superantigen function was required for infection by milk-borne MMTV, we created HYB PRO/Cla transgenic mice. These mice produced a full-length, packaged viral RNA with a frameshift mutation that caused premature termination of the superantigen protein. Young HYB PRO/Cla mice showed no deletion of their cognate V beta 14+ T cells, although they shed virus in their milk. The nontransgenic offspring of the HYB PRO/Cla mice were infected with this virus, since transgene-specific viral transcripts were detected in their mammary glands. Surprisingly, these offspring demonstrated the progressive deletion of V beta 14+ T cells characteristic of exogenous MMTV (C3H) infection. Sequence analysis demonstrated that these newly acquired viruses had reconstituted superantigen open reading frames resulting from recombination between the HYB PRO/Cla and endogenous Mtv-1 proviral RNAs. Thus, there is selection during the infection process for MMTVs with functional superantigen genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spastic (spa), spasmodic (spd), and oscillator (ot) mice have naturally occurring glycine receptor ( GlyR) mutations, which manifest as motor deficits and an exaggerated startle response. Using whole-cell recording in hypoglossal motoneurons, we compared the physiological mechanisms by which each mutation alters GlyR function. Mean glycinergic miniature IPSC ( mIPSC) amplitude and frequency were dramatically reduced (> 50%) compared with controls for each mutant. mIPSC decay times were unchanged in spa/spa (4.5 +/- 0.3 vs 4.7 +/- 0.2 ms), reduced in spd/spd (2.7 +/- 0.2 vs 4.7 +/- 0.2 ms), and increased in ot/ot (12.3 +/- 1.2 vs 4.8 +/- 0.2 ms). Thus, in spastic, GlyRs are functionally normal but reduced in number, whereas in spasmodic, GlyR kinetics is faster. The oscillator mutation results in complete absence of alpha 1-containing GlyRs; however, some non-alpha 1-containing GlyRs persist at synapses. Fluctuation analysis of membrane current, induced by glycine application to outside-out patches, showed that mean single-channel conductance was increased in spa/spa (64.2 +/- 4.9 vs 36.1 +/- 1.4 pS), but unchanged in spd/spd (32.4 +/- 2.1 vs 35.3 +/- 2.1 pS). GlyR-mediated whole-cell currents in spa/spa exhibited increased picrotoxin sensitivity (27 vs 71% block for 100 mu M), indicating alpha 1 homomeric GlyR expression. The picrotoxin sensitivity of evoked glycinergic IPSCs and conductance of synaptic GlyRs, as determined by nonstationary variance analysis, were identical for spa/spa and controls. Together, these findings show the three mutations disrupt GlyR-mediated inhibition via different physiological mechanisms, and the spastic mutation results in compensatory alpha 1 homomeric GlyRs at extrasynaptic loci.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-I gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-IA. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::strr null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::strr. Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this thesis was to identify genetic factors involved in frontotemporal lobar degeneration (FTLD), a neurodegenerative disorder clinically characterised by a progressive change in personality, behaviour and language. FTLD is a genetically complex disorder and a positive family history is found in up to 40% of the cases. In 10-20% of the familial cases the disease can be explained by mutations in the gene encoding the microtubule associated protein tau (MAPT). In the first study we describe the clinical and neuropathological features of a Finnish family with FTLD caused by a mutation in MAPT. We also provide evidence that the pathogenic mechanism of this mutation is through altered splicing of MAPT transcripts. Recently, mutations in the gene encoding progranulin (PGRN) were identified as a major cause of FTLD. In the second study we describe a Swedish family with FTLD caused by a frameshift mutation in PGRN. We provide a clinical and neuropathological description of the family, as well as evidence that the pathogenicity of this mutation is through nonsense-mediated decay of the mutant mRNA transcripts and PGRN haploinsufficiency. In the third study we describe a novel PGRN splice site mutation and a previously described PGRN frameshift mutation, found in a mutation screen of 51 FTLD patients. We describe the clinical and neuropathological characteristics of the mutation carriers and demonstrate that haploinsufficiency is the pathogenic mechanism of the two mutations. In the fourth study we investigate the prevalence of PGRN and MAPT gene dosage alterations in 39 patients with FTLD. No gene dosage alterations were identified, indicating that variations in copy number of the PGRN and MAPT genes are not a common cause of disease, at least not in this FTLD patient collection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, huge breakthroughs in genetics - driven by new technology and different statistical approaches - have resulted in a plethora of new disease genes identified for both common and rare diseases. Massive parallel sequencing, commonly known as next-generation sequencing, is the latest advance in genetics, and has already facilitated the discovery of the molecular cause of many monogenic disorders. This article describes this new technology and reviews how this approach has been used successfully in patients with skeletal dysplasias. Moreover, this article illustrates how the study of rare diseases can inform understanding and therapeutic developments for common diseases such as osteoporosis. © International Osteoporosis Foundation and National Osteoporosis Foundation 2013.