893 resultados para forg eye leaf spot
Resumo:
The cercospora leaf spot, caused by Cercospora abelmoschi Ellis and Everhart, is quite common in okra culture. Therefore, this study aimed to evaluate the efficiency of aqueous extracts of neem ( Azadirachta indica A. Juss), citronella ( Cymbopogon nardus (L.) Rendle), eucalyptus ( Eucalyptus grandis L.), ecolife®, A. indica oil and fungicide cercobin 700 PM® in control of cercospora leaf spot on okra in greenhouse. The extracts and neem oil were tested in concentration 10%, the fungicide cercobin 700PM® in dose 2.5 g.l-1, applied 10 days after pathogen inoculation by leaf spray and the citric biomass extract ecolife® in concentration 5.0 ml.l-1, applied 10 days before pathogen inoculation. All treatments, except ecolife®, were effective in controlling cercospora leaf spot and may be recommended as alternatives in agroecological systems.
Resumo:
Based on the evidences presented in this paper, results from classical genetic studies, fine-mapping information and physical position analysis using the reference genome sequence of P. vulgaris, the BIC Genetic Committee has formally accepted the proposed new gene symbols.
Resumo:
The aim of this study was to identify sources of resistance in the germplasm collection providing information of potential sources of resistance to introduce in breeding programs.
Resumo:
Cultivares comerciais de macieiras são infectadas por 3 espécies principais de vírus: Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV) e Apple stem pitting virus (ASPV), geralmente em infecções complexas. O objetivo do estudo foi caracterizar a diversidade genética de genes da proteína capsidial (CP) de isolados de ACLSV.
Resumo:
Apples are commercially grown in Brazil in a subtropical environment that favors the development of fungal diseases such as Glomerella leaf spot (GLS) caused mainly by Glomerella cingulata (anamorph Colletotrichum gloeosporioides). The main objective of this work was to evaluate the effect of mixed infections by Apple stem grooving virus (ASGV) and Apple stem pitting virus (ASPV) on the infection and the colonization processes of C. gloeosporiodes in cv. Maxi Gala plants. Leaves of 16-month-old potted plants were spray-inoculated and both the disease incidence and lesion count were monitored over time and leaf severity was assessed in the final evaluation using an image analysis tool. Results showed that initial infection estimated from a monomolecular model fitted to progress of lesion count was higher and the incubation period (time to reach 50% incidence) was on average 10 h shorter in virus-infected plants compared to non-infected plants. It is hypothesized that initial events such as conidial germination and fungal penetration into plant cells were facilitated by the presence of viral infection. Also, final GLS severity was significantly higher in the virus-infected plants. Mixed infections by ASGV/ASPV seemed to make apple leaves more susceptible to the initial infection and colonization by C. gloeosporioides.
Resumo:
The etiological agent of maize white spot (MWS) disease has been a subject of controversy and discussion. Initially the disease was described as Phaeosphaeria leaf spot caused by Phaeosphaeria maydis. Other authors have Suggested the existence of different fungal species causing similar symptoms. Recently, a bacterium, Pantoea ananatis, was described as the causal agent of this disease. The purpose of this Study was to offer additional information on the correct etiology of this disease by providing visual evidence of the presence of the bacterium in the interior of the MWS lesions by using transmission electron microscopy (TEM) and molecular techniques. The TEM allowed Visualization of a large amount of bacteria in the intercellular spaces of lesions collected from both artificially and naturally infected plants. Fungal structures were not visualized in young lesions. Bacterial primers for the 16S rRNA and rpoB genes were used in PCR reactions to amplify DNA extracted from water-soaked (young) and necrotic lesions. The universal fungal oligonucleotide ITS4 was also included to identity the possible presence of fungal structures inside lesions. Positive PCR products from water-soaked lesions, both from naturally and artificially inoculated plants, were produced with bacterial primers, whereas no amplification was observed when ITS4 oligonucleotide was used. On the other hand, DNA amplification with ITS4 primer was observed when DNA was isolated from necrotic (old) lesions. These results reinforced previous report of P. ananatis as the primary pathogen and the hypothesis that fungal species may colonize lesions pre-established by P. ananatis.
Resumo:
Knowing the structure and distribution of nutrients in plant tissues can clarify some mechanisms of pathogen attack in plants and plant defense against infection, thus helping management strategies. The aim of this study was verify differences in distribution of mineral nutrients in coffee leaf tissues around foliar lesions of bacterial blight of coffee, blister spot, cercospora leaf, phoma leaf spot and coffee leaf rust. Fragments of leaf tissue surrounding the lesions were dehydrated in silica gel, carbon covered and subjected to X-ray microanalysis (MAX). Thirty-three chemical elements were detected in leaf tissue; however, there was variation in potassium and calcium contents surrounding the lesions. The highest potassium content was found in asymptomatic tissues surrounding the lesions, decreasing toward the transition zone and reaching minimum content in symptomatic tissues. The highest calcium content was found in symptomatic tissues, decreasing toward the transition zone and reaching minimum content in asymptomatic tissues. Therefore, MAX can be used to analyze the composition and distribution of nutrients in plant tissues and, if associated with mineral nutrition, it may help understand host-pathogen relationships and plant disease management.
Resumo:
On-site detection of inoculum of polycyclic plant pathogens could potentially contribute to management of disease outbreaks. A 6-min, in-field competitive immunochromatographic lateral flow device (CLFD) assay was developed for detection of Alternaria brassicae (the cause of dark leaf spot in brassica crops) in air sampled above the crop canopy. Visual recording of the test result by eye provides a detection threshold of approximately 50 dark leaf spot conidia. Assessment using a portable reader improved test sensitivity. In combination with a weather-driven infection model, CLFD assays were evaluated as part of an in-field risk assessment to identify periods when brassica crops were at risk from A. brassicae infection. The weather-driven model overpredicted A. brassicae infection. An automated 7-day multivial cyclone air sampler combined with a daily in-field CLFD assay detected A. brassicae conidia air samples from above the crops. Integration of information from an in-field detection system (CLFD) with weather-driven mathematical models predicting pathogen infection have the potential for use within disease management systems.
Resumo:
Single-copy restriction fragment length polymorphism (RFLP) markers were used to determine the genetic structure of Mycosphaerella fijiensis, the cause of black leaf streak (black Sigatoka) disease of banana and plantain, in the Torres Strait, Papua New Guinea (PNG), and the Pacific Islands. A moderate level of genetic variation was observed in all populations with genotypic diversity values of 60-78% of the theoretical maximum, and gene diversity (H) values between 0.269 and 0.336. All populations were at gametic equilibrium, and with the high level of genotypic diversity observed this indicated that sexual reproduction has a major role in the genetic structure of the M. fijiensis populations examined. Population differentiation was tested on several hierarchical scales. No evidence of population differentiation was observed between sites on Mer Island. A moderate level of population differentiation was observed within the Torres Strait, between Badu and Mer Islands (F-ST = 0.097). On a regional scale, the greatest differentiation was found between the populations of the Torres Strait and the Pacific. Populations from these regions were more closely related to the PNG population than to each other, suggesting they were founded in separate events from the same population.
Resumo:
The RT-PCR technique for the detection of apple stem grooving virus (ASGV), apple stem pitting virus (ASPV), apple chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV) and pear blister canker viroid (PBCV) was evaluated for health control of fruit plants from nurseries. The technique was evaluated in purified RNA and crude extracts and also in phloem collected in autumn and from young spring shoots. The results obtained for phytoplasma detection with ribosomal and non-ribosomal primers are also presented.
Resumo:
Mungbean cultivar MGS Esmeralda was developed by Asian Vegetable Research and Development Center (Shanhua, Taiwan), as a result of crossing between the lines VC 1973A and VC 2768A. In ten trials conducted in the State of Minas Gerais, Brazil, it produced 13.5% more grains than 'Ouro Verde MG-2' (control cultivar), and its highest yield was 2,550 kg ha-1. The cultivar MGS Esmeralda is more susceptible to lodging, and its pods mature more uniformly than Ouro Verde MG-2 pods. One hundred-seed mass of 'MGS Esmeralda' ranged between 5.5 and 6.8 g. Both cultivars are susceptible to powdery mildew and cercospora leaf spot.
Resumo:
A new leaf spot and fruit rot disease is reported on barbados cherry (Malpighia glabra), occurring in the State of Maranhão, Brazil, caused by the fungus Calonectria ilicicola.
Resumo:
Severe epidemics of leaf blotch and black leaf spot of oat (Avena sativa) caused by Drechslera avenae and Drechslera sp., respectively, are frequently observed in the State of Paraná, Brazil. Although some morphological differences between the isolates causing two different symptoms were noticed, the genetic relationship between them was not clear. Twenty-four isolates of D. avenae and Drechslera sp, collected between 1996-98, were assessed for the genetic variability by molecular and pathogenic analyses. The amplification products using primer pair ITS4/ITS5 showed a fragment length of approximately 600 bp for all the isolates except for one black spot isolate, where the fragment length was approximately 550 bp. Restriction enzymes Hinf I and Taq I, that cut in the ITS region, produced similar restriction patterns for all the isolates, whereas four others produced variable restriction patterns. RAPD analysis also showed distinctive patterns for some isolates. No clear difference between the black spot and the leaf blotch isolates was observed either by the molecular or by the pathogenicity analysis. Nonetheless, the rDNA analysis suggests that Drechslera probably comprises at least three distinct taxa. The results indicate that the difference observed between the isolates originating from two types of symptoms is due to intra-specific variants of D. avenae.