936 resultados para forecasting.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a wind speed forecasting model that contributes to the development and implementation of adequate methodologies for Energy Resource Man-agement in a distribution power network, with intensive use of wind based power generation. The proposed fore-casting methodology aims to support the operation in the scope of the intraday resources scheduling model, name-ly with a time horizon of 10 minutes. A case study using a real database from the meteoro-logical station installed in the GECAD renewable energy lab was used. A new wind speed forecasting model has been implemented and it estimated accuracy was evalu-ated and compared with a previous developed forecast-ing model. Using as input attributes the information of the wind speed concerning the previous 3 hours enables to obtain results with high accuracy for the wind short-term forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind speed forecasting has been becoming an important field of research to support the electricity industry mainly due to the increasing use of distributed energy sources, largely based on renewable sources. This type of electricity generation is highly dependent on the weather conditions variability, particularly the variability of the wind speed. Therefore, accurate wind power forecasting models are required to the operation and planning of wind plants and power systems. A Support Vector Machines (SVM) model for short-term wind speed is proposed and its performance is evaluated and compared with several artificial neural network (ANN) based approaches. A case study based on a real database regarding 3 years for predicting wind speed at 5 minutes intervals is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baseado no relatório realizado para a unidade lectiva “Métodos de Análise Prospectiva” do Programa Doutoral em Avaliação de Tecnologia, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Statistics and Information Management

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Forecasting dengue cases in a population by using time-series models can provide useful information that can be used to facilitate the planning of public health interventions. The objective of this article was to develop a forecasting model for dengue incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. METHODS: The forecasting model for dengue incidence was performed with R software using the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the model using the data collected between January and December of 2009. RESULTS: SARIMA (2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number of dengue cases in a given month can be estimated by the number of dengue cases occurring one, two and twelve months prior. The predicted values for 2009 are relatively close to the observed values. CONCLUSIONS: The results of this article indicate that SARIMA models are useful tools for monitoring dengue incidence. We also observe that the SARIMA model is capable of representing with relative precision the number of cases in a next year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work project is to find a model that is able to accurately forecast the daily Value-at-Risk for PSI-20 Index, independently of the market conditions, in order to expand empirical literature for the Portuguese stock market. Hence, two subsamples, representing more and less volatile periods, were modeled through unconditional and conditional volatility models (because it is what drives returns). All models were evaluated through Kupiec’s and Christoffersen’s tests, by comparing forecasts with actual results. Using an out-of-sample of 204 observations, it was found that a GARCH(1,1) is an accurate model for our purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nestlé’s Dynamic Forecasting Process: Anticipating Risks and Opportunities This Work Project discusses the Nestlé’s Dynamic Forecasting Process, implemented within the organization as a way of reengineering its performance management concept and processes, so as to make it more flexible and capable to react to volatile business conditions. When stressing the importance of demand planning to reallocate resources and enhance performance, Nescafé Dolce Gusto comes as way of seeking improvements on this forecasts’ accuracy and it is thus, by providing a more accurate model on its capsules’ sales, as well as recommending adequate implementations that positively contribute to the referred Planning Process, that value is brought to the Project

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Publicado em "AIP Conference Proceedings", Vol. 1648

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article provides a method for long-term forecast of frame alignment losses based on the bit-error rate monitoring for structure-agnostic circuit emulation service over Ethernet in a mobile backhaul network. The developed method with corresponding algorithm allows to detect instants of probable frame alignment losses in a long term perspective in order to give engineering personnel extra time to take some measures aimed at losses prevention. Moreover, long-term forecast of frame alignment losses allows to make a decision about the volume of TDM data encapsulated into a circuit emulation frame in order to increase utilization of the emulated circuit. The developed long-term forecast method formalized with the corresponding algorithm is recognized as cognitive and can act as a part of network predictive monitoring system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the forecasting performance of a continuous stochastic volatility model with two factors of volatility (SV2F) and compares it to those of GARCH and ARFIMA models. The empirical results show that the volatility forecasting ability of the SV2F model is better than that of the GARCH and ARFIMA models, especially when volatility seems to change pattern. We use ex-post volatility as a proxy of the realized volatility obtained from intraday data and the forecasts from the SV2F are calculated using the reprojection technique proposed by Gallant and Tauchen (1998).