995 resultados para flood risk
Resumo:
Global climate change is predicted to have impacts on the frequency and severity of flood events. In this study, output from Global Circulation Models (GCMs) for a range of possible future climate scenarios was used to force hydrologic models for four case study watersheds built using the Soil and Water Assessment Tool (SWAT). GCM output was applied with either the "delta change" method or a bias correction. Potential changes in flood risk are assessed based on modeling results and possible relationships to watershed characteristics. Differences in model outputs when using the two different methods of adjusting GCM output are also compared. Preliminary results indicate that watersheds exhibiting higher proportions of runoff in streamflow are more vulnerable to changes in flood risk. The delta change method appears to be more useful when simulating extreme events as it better preserves daily climate variability as opposed to using bias corrected GCM output.
Resumo:
Current procedures for flood risk estimation assume flood distributions are stationary over time, meaning annual maximum flood (AMF) series are not affected by climatic variation, land use/land cover (LULC) change, or management practices. Thus, changes in LULC and climate are generally not accounted for in policy and design related to flood risk/control, and historical flood events are deemed representative of future flood risk. These assumptions need to be re-evaluated, however, as climate change and anthropogenic activities have been observed to have large impacts on flood risk in many areas. In particular, understanding the effects of LULC change is essential to the study and understanding of global environmental change and the consequent hydrologic responses. The research presented herein provides possible causation for observed nonstationarity in AMF series with respect to changes in LULC, as well as a means to assess the degree to which future LULC change will impact flood risk. Four watersheds in the Midwest, Northeastern, and Central United States were studied to determine flood risk associated with historical and future projected LULC change. Historical single framed aerial images dating back to the mid-1950s were used along with Geographic Information Systems (GIS) and remote sensing models (SPRING and ERDAS) to create historical land use maps. The Forecasting Scenarios of Future Land Use Change (FORE-SCE) model was applied to generate future LULC maps annually from 2006 to 2100 for the conterminous U.S. based on the four IPCC-SRES future emission scenario conditions. These land use maps were input into previously calibrated Soil and Water Assessment Tool (SWAT) models for two case study watersheds. In order to isolate effects of LULC change, the only variable parameter was the Runoff Curve Number associated with the land use layer. All simulations were run with daily climate data from 1978-1999, consistent with the 'base' model which employed the 1992 NLCD to represent 'current' conditions. Output daily maximum flows were converted to instantaneous AMF series and were subsequently modeled using a Log-Pearson Type 3 (LP3) distribution to evaluate flood risk. Analysis of the progression of LULC change over the historic period and associated SWAT outputs revealed that AMF magnitudes tend to increase over time in response to increasing degrees of urbanization. This is consistent with positive trends in the AMF series identified in previous studies, although there are difficulties identifying correlations between LULC change and identified change points due to large time gaps in the generated historical LULC maps, mainly caused by unavailability of sufficient quality historic aerial imagery. Similarly, increases in the mean and median AMF magnitude were observed in response to future LULC change projections, with the tails of the distributions remaining reasonably constant. FORE-SCE scenario A2 was found to have the most dramatic impact on AMF series, consistent with more extreme projections of population growth, demands for growing energy sources, agricultural land, and urban expansion, while AMF outputs based on scenario B2 showed little changes for the future as the focus is on environmental conservation and regional solutions to environmental issues.
Resumo:
In questo lavoro di tesi viene presentato e validato un modello di rischio di alluvione a complessità intermedia per scenari climatici futuri. Questo modello appartiene a quella categoria di strumenti che mirano a soddisfare le esigenze identificate dal World Climate Research Program (WRCP) per affrontare gli effetti del cambiamento climatico. L'obiettivo perseguito è quello di sviluppare, seguendo un approccio ``bottom-up" al rischio climatico regionale, strumenti che possano aiutare i decisori a realizzare l'adattamento ai cambiamenti climatici. Il modello qui presentato è interamente basato su dati open-source forniti dai servizi Copernicus. Il contributo di questo lavoro di tesi riguarda lo sviluppo di un modello, formulato da (Ruggieri et al.), per stimare i danni di eventi alluvionali fluviali per specifici i livelli di riscaldamento globale (GWL). Il modello è stato testato su tre bacini idrografici di medie dimensioni in Emilia-Romagna, Panaro, Reno e Secchia. In questo lavoro, il modello viene sottoposto a test di sensibilità rispetto a un'ipotesi enunciata nella formulazione del modello, poi vengono effettuate analisi relative all'ensemble multi-modello utilizzato per le proiezioni. Il modello viene quindi validato, confrontando i danni stimati nel clima attuale per i tre fiumi con i danni osservati e confrontando le portate simulate con quelle osservate. Infine, vengono stimati i danni associati agli eventi alluvionali in tre scenari climatici futuri caratterizzati da GWL di 1.5° C, 2.0° C e 3.0°C.
Resumo:
The service of a critical infrastructure, such as a municipal wastewater treatment plant (MWWTP), is taken for granted until a flood or another low frequency, high consequence crisis brings its fragility to attention. The unique aspects of the MWWTP call for a method to quantify the flood stage-duration-frequency relationship. By developing a bivariate joint distribution model of flood stage and duration, this study adds a second dimension, time, into flood risk studies. A new parameter, inter-event time, is developed to further illustrate the effect of event separation on the frequency assessment. The method is tested on riverine, estuary and tidal sites in the Mid-Atlantic region. Equipment damage functions are characterized by linear and step damage models. The Expected Annual Damage (EAD) of the underground equipment is further estimated by the parametric joint distribution model, which is a function of both flood stage and duration, demonstrating the application of the bivariate model in risk assessment. Flood likelihood may alter due to climate change. A sensitivity analysis method is developed to assess future flood risk by estimating flood frequency under conditions of higher sea level and stream flow response to increased precipitation intensity. Scenarios based on steady and unsteady flow analysis are generated for current climate, future climate within this century, and future climate beyond this century, consistent with the WWTP planning horizons. The spatial extent of flood risk is visualized by inundation mapping and GIS-Assisted Risk Register (GARR). This research will help the stakeholders of the critical infrastructure be aware of the flood risk, vulnerability, and the inherent uncertainty.
Resumo:
The main objective of this thesis on flooding was to produce a detailed report on flooding with specific reference to the Clare River catchment. Past flooding in the Clare River catchment was assessed with specific reference to the November 2009 flood event. A Geographic Information System was used to produce a graphical representation of the spatial distribution of the November 2009 flood. Flood risk is prominent within the Clare River catchment especially in the region of Claregalway. The recent flooding events of November 2009 produced significant fluvial flooding from the Clare River. This resulted in considerable flood damage to property. There were also hidden costs such as the economic impact of the closing of the N17 until floodwater subsided. Land use and channel conditions are traditional factors that have long been recognised for their effect on flooding processes. These factors were examined in the context of the Clare River catchment to determine if they had any significant effect on flood flows. Climate change has become recognised as a factor that may produce more significant and frequent flood events in the future. Many experts feel that climate change will result in an increase in the intensity and duration of rainfall in western Ireland. This would have significant implications for the Clare River catchment, which is already vulnerable to flooding. Flood estimation techniques are a key aspect in understanding and preparing for flood events. This study uses methods based on the statistical analysis of recorded data and methods based on a design rainstorm and rainfall-runoff model to estimate flood flows. These provide a mathematical basis to evaluate the impacts of various factors on flooding and also to generate practical design floods, which can be used in the design of flood relief measures. The final element of the thesis includes the author’s recommendations on how flood risk management techniques can reduce existing flood risk in the Clare River catchment. Future implications to flood risk due to factors such as climate change and poor planning practices are also considered.
Resumo:
Floods are the natural hazards that produce the highest number of casualties and material damage in the Western Mediterranean. An improvement in flood risk assessment and study of a possible increase in flooding occurrence are therefore needed. To carry out these tasks it is important to have at our disposal extensive knowledge on historical floods and to find an efficient way to manage this geographical data. In this paper we present a complete flood database spanning the 20th century for the whole of Catalonia (NE Spain), which includes documentary information (affected areas and damage) and instrumental information (meteorological and hydrological records). This geodatabase, named Inungama, has been implemented on a GIS (Geographical Information System) in order to display all the information within a given geographical scenario, as well as to carry out an analysis thereof using queries, overlays and calculus. Following a description of the type and amount of information stored in the database and the structure of the information system, the first applications of Inungama are presented. The geographical distribution of floods shows the localities which are more likely to be flooded, confirming that the most affected municipalities are the most densely populated ones in coastal areas. Regarding the existence of an increase in flooding occurrence, a temporal analysis has been carried out, showing a steady increase over the last 30 years.
The relationship between Lamb weather types and long-term changes in flood frequency, River Eden, UK
Resumo:
Research has found that both flood magnitude and frequency in the UK may have increased over the last five decades. However, evaluating whether or not this is a systematic trend is difficult because of the lack of longer records. Here we compile and consider an extreme flood record that extends back to 1770. Since 1770, there have been 137 recorded extreme floods. However, over this period, there is not a unidirectional trend of rising extreme flood risk over time. Instead, there are clear flood-rich and flood-poor periods. Three main flood-rich periods were identified: 18731904, 19231933, and 1994 onwards. To provide a first analysis of what is driving these periods, and given the paucity of more sophisticated datasets that extend back to the 18th century, objective Lamb weather types were used. Of the 27 objective Lamb weather types, only 11 could be associated with the extreme floods during the gauged period, and only 5 of these accounted for > 80% of recorded extreme floods The importance of these five weather types over a longer timescale for flood risk in Carlisle was assessed, through calculating the proportion of each hydrological year classified as being associated with these flood-generating weather types. Two periods clearly had more than the average proportions of the year classified as one of the flood causing weather types; 19001940 and 19832007; and these two periods both contained flood-rich hydrological records. Thus, the analysis suggests that systematic organisation of the North Atlantic climate system may be manifest as periods of elevated and reduced flood risk, an observation that has major implications for analyses that assume that climatic drivers of flood risk can be either statistically stationary or are following a simple trend. Copyright (c) 2011 Royal Meteorological Society
Resumo:
A traditional method of validating the performance of a flood model when remotely sensed data of the flood extent are available is to compare the predicted flood extent to that observed. The performance measure employed often uses areal pattern-matching to assess the degree to which the two extents overlap. Recently, remote sensing of flood extents using synthetic aperture radar (SAR) and airborne scanning laser altimetry (LIDAR) has made more straightforward the synoptic measurement of water surface elevations along flood waterlines, and this has emphasised the possibility of using alternative performance measures based on height. This paper considers the advantages that can accrue from using a performance measure based on waterline elevations rather than one based on areal patterns of wet and dry pixels. The two measures were compared for their ability to estimate flood inundation uncertainty maps from a set of model runs carried out to span the acceptable model parameter range in a GLUE-based analysis. A 1 in 5-year flood on the Thames in 1992 was used as a test event. As is typical for UK floods, only a single SAR image of observed flood extent was available for model calibration and validation. A simple implementation of a two-dimensional flood model (LISFLOOD-FP) was used to generate model flood extents for comparison with that observed. The performance measure based on height differences of corresponding points along the observed and modelled waterlines was found to be significantly more sensitive to the channel friction parameter than the measure based on areal patterns of flood extent. The former was able to restrict the parameter range of acceptable model runs and hence reduce the number of runs necessary to generate an inundation uncertainty map. A result of this was that there was less uncertainty in the final flood risk map. The uncertainty analysis included the effects of uncertainties in the observed flood extent as well as in model parameters. The height-based measure was found to be more sensitive when increased heighting accuracy was achieved by requiring that observed waterline heights varied slowly along the reach. The technique allows for the decomposition of the reach into sections, with different effective channel friction parameters used in different sections, which in this case resulted in lower r.m.s. height differences between observed and modelled waterlines than those achieved by runs using a single friction parameter for the whole reach. However, a validation of the modelled inundation uncertainty using the calibration event showed a significant difference between the uncertainty map and the observed flood extent. While this was true for both measures, the difference was especially significant for the height-based one. This is likely to be due to the conceptually simple flood inundation model and the coarse application resolution employed in this case. The increased sensitivity of the height-based measure may lead to an increased onus being placed on the model developer in the production of a valid model
Resumo:
The performance of a 2D numerical model of flood hydraulics is tested for a major event in Carlisle, UK, in 2005. This event is associated with a unique data set, with GPS surveyed wrack lines and flood extent surveyed 3 weeks after the flood. The Simple Finite Volume (SFV) model is used to solve the 2D Saint-Venant equations over an unstructured mesh of 30000 elements representing channel and floodplain, and allowing detailed hydraulics of flow around bridge piers and other influential features to be represented. The SFV model is also used to corroborate flows recorded for the event at two gauging stations. Calibration of Manning's n is performed with a two stage strategy, with channel values determined by calibration of the gauging station models, and floodplain values determined by optimising the fit between model results and observed water levels and flood extent for the 2005 event. RMS error for the calibrated model compared with surveyed water levels is ~±0.4m, the same order of magnitude as the estimated error in the survey data. The study demonstrates the ability of unstructured mesh hydraulic models to represent important hydraulic processes across a range of scales, with potential applications to flood risk management.
Resumo:
Recent severe flooding in the UK has highlighted the need for better information on flood risk, increasing the pressure on engineers to enhance the capabilities of computer models for flood prediction. This paper evaluates the benefits to be gained from the use of remotely sensed data to support flood modelling. The remotely sensed data available can be used either to produce high-resolution digital terrain models (DTMs) (light detection and ranging (Lidar) data), or to generate accurate inundation mapping of past flood events (airborne synthetic aperture radar (SAR) data and aerial photography). The paper reports on the modelling of real flood events that occurred at two UK sites on the rivers Severn and Ouse. At these sites a combination of remotely sensed data and recorded hydrographs was available. It is concluded first that light detection and ranging Lidar generated DTMs support the generation of considerably better models and enhance the visualisation of model results and second that flood outlines obtained from airborne SAR or aerial images help develop an appreciation of the hydraulic behaviour of important model components, and facilitate model validation. The need for further research is highlighted by a number of limitations, namely: the difficulties in obtaining an adequate representation of hydraulically important features such as embankment crests and walls; uncertainties in the validation data; and difficulties in extracting flood outlines from airborne SAR images in urban areas.
Resumo:
Airborne scanning laser altimetry (LiDAR) is an important new data source for river flood modelling. LiDAR can give dense and accurate DTMs of floodplains for use as model bathymetry. Spatial resolutions of 0.5m or less are possible, with a height accuracy of 0.15m. LiDAR gives a Digital Surface Model (DSM), so vegetation removal software (e.g. TERRASCAN) must be used to obtain a DTM. An example used to illustrate the current state of the art will be the LiDAR data provided by the EA, which has been processed by their in-house software to convert the raw data to a ground DTM and separate vegetation height map. Their method distinguishes trees from buildings on the basis of object size. EA data products include the DTM with or without buildings removed, a vegetation height map, a DTM with bridges removed, etc. Most vegetation removal software ignores short vegetation less than say 1m high. We have attempted to extend vegetation height measurement to short vegetation using local height texture. Typically most of a floodplain may be covered in such vegetation. The idea is to assign friction coefficients depending on local vegetation height, so that friction is spatially varying. This obviates the need to calibrate a global floodplain friction coefficient. It’s not clear at present if the method is useful, but it’s worth testing further. The LiDAR DTM is usually determined by looking for local minima in the raw data, then interpolating between these to form a space-filling height surface. This is a low pass filtering operation, in which objects of high spatial frequency such as buildings, river embankments and walls may be incorrectly classed as vegetation. The problem is particularly acute in urban areas. A solution may be to apply pattern recognition techniques to LiDAR height data fused with other data types such as LiDAR intensity or multispectral CASI data. We are attempting to use digital map data (Mastermap structured topography data) to help to distinguish buildings from trees, and roads from areas of short vegetation. The problems involved in doing this will be discussed. A related problem of how best to merge historic river cross-section data with a LiDAR DTM will also be considered. LiDAR data may also be used to help generate a finite element mesh. In rural area we have decomposed a floodplain mesh according to taller vegetation features such as hedges and trees, so that e.g. hedge elements can be assigned higher friction coefficients than those in adjacent fields. We are attempting to extend this approach to urban area, so that the mesh is decomposed in the vicinity of buildings, roads, etc as well as trees and hedges. A dominant points algorithm is used to identify points of high curvature on a building or road, which act as initial nodes in the meshing process. A difficulty is that the resulting mesh may contain a very large number of nodes. However, the mesh generated may be useful to allow a high resolution FE model to act as a benchmark for a more practical lower resolution model. A further problem discussed will be how best to exploit data redundancy due to the high resolution of the LiDAR compared to that of a typical flood model. Problems occur if features have dimensions smaller than the model cell size e.g. for a 5m-wide embankment within a raster grid model with 15m cell size, the maximum height of the embankment locally could be assigned to each cell covering the embankment. But how could a 5m-wide ditch be represented? Again, this redundancy has been exploited to improve wetting/drying algorithms using the sub-grid-scale LiDAR heights within finite elements at the waterline.
Resumo:
Ensemble predictions are being used more frequently to model the propagation of uncertainty through complex, coupled meteorological, hydrological and coastal models, with the goal of better characterising flood risk. In this paper, we consider the issues that we judge to be important when designing and evaluating ensemble predictions, and make recommendations for the guidance of future research.