82 resultados para fisikako laborategiko praktikak


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen is the only atom for which the Schr odinger equation is solvable. Consisting only of a proton and an electron, hydrogen is the lightest element and, nevertheless, is far from being simple. Under ambient conditions, it forms diatomic molecules H2 in gas phase, but di erent temperature and pressures lead to a complex phase diagram, which is not completely known yet. Solid hydrogen was rst documented in 1899 [1] and was found to be isolating. At higher pressures, however, hydrogen can be metallized. In 1935 Wigner and Huntington predicted that the metallization pressure would be 25 GPa [2], where molecules would disociate to form a monoatomic metal, as alkali metals that lie below hydrogen in the periodic table. The prediction of the metallization pressure turned out to be wrong: metallic hydrogen has not been found yet, even under a pressure as high as 320 GPa. Nevertheless, extrapolations based on optical measurements suggest that a metallic phase may be attained at 450 GPa [3]. The interest of material scientist in metallic hydrogen can be attributed, at least to a great extent, to Ashcroft, who in 1968 suggested that such a system could be a hightemperature superconductor [4]. The temperature at which this material would exhibit a transition from a superconducting to a non-superconducting state (Tc) was estimated to be around room temperature. The implications of such a statement are very interesting in the eld of astrophysics: in planets that contain a big quantity of hydrogen and whose temperature is below Tc, superconducting hydrogen may be found, specially at the center, where the gravitational pressure is high. This might be the case of Jupiter, whose proportion of hydrogen is about 90%. There are also speculations suggesting that the high magnetic eld of Jupiter is due to persistent currents related to the superconducting phase [5]. Metallization and superconductivity of hydrogen has puzzled scientists for decades, and the community is trying to answer several questions. For instance, what is the structure of hydrogen at very high pressures? Or a more general one: what is the maximum Tc a phonon-mediated superconductor can have [6]? A great experimental e ort has been carried out pursuing metallic hydrogen and trying to answer the questions above; however, the characterization of solid phases of hydrogen is a hard task. Achieving the high pressures needed to get the sought phases requires advanced technologies. Diamond anvil cells (DAC) are commonly used devices. These devices consist of two diamonds with a tip of small area; for this reason, when a force is applied, the pressure exerted is very big. This pressure is uniaxial, but it can be turned into hydrostatic pressure using transmitting media. Nowadays, this method makes it possible to reach pressures higher than 300 GPa, but even at this pressure hydrogen does not show metallic properties. A recently developed technique that is an improvement of DAC can reach pressures as high as 600 GPa [7], so it is a promising step forward in high pressure physics. Another drawback is that the electronic density of the structures is so low that X-ray di raction patterns have low resolution. For these reasons, ab initio studies are an important source of knowledge in this eld, within their limitations. When treating hydrogen, there are many subtleties in the calculations: as the atoms are so light, the ions forming the crystalline lattice have signi cant displacements even when temperatures are very low, and even at T=0 K, due to Heisenberg's uncertainty principle. Thus, the energy corresponding to this zero-point (ZP) motion is signi cant and has to be included in an accurate determination of the most stable phase. This has been done including ZP vibrational energies within the harmonic approximation for a range of pressures and at T=0 K, giving rise to a series of structures that are stable in their respective pressure ranges [8]. Very recently, a treatment of the phases of hydrogen that includes anharmonicity in ZP energies has suggested that relative stability of the phases may change with respect to the calculations within the harmonic approximation [9]. Many of the proposed structures for solid hydrogen have been investigated. Particularly, the Cmca-4 structure, which was found to be the stable one from 385-490 GPa [8], is metallic. Calculations for this structure, within the harmonic approximation for the ionic motion, predict a Tc up to 242 K at 450 GPa [10]. Nonetheless, due to the big ionic displacements, the harmonic approximation may not su ce to describe correctly the system. The aim of this work is to apply a recently developed method to treat anharmonicity, the stochastic self-consistent harmonic approximation (SSCHA) [11], to Cmca-4 metallic hydrogen. This way, we will be able to study the e ects of anharmonicity in the phonon spectrum and to try to understand the changes it may provoque in the value of Tc. The work is structured as follows. First we present the theoretical basis of the calculations: Density Functional Theory (DFT) for the electronic calculations, phonons in the harmonic approximation and the SSCHA. Then we apply these methods to Cmca-4 hydrogen and we discuss the results obtained. In the last chapter we draw some conclusions and propose possible future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materia kondentsatuko sikan erronka nagusietako bat naturako materialen izaera eza- gutu eta ezaugarritzea da. Orain dela urte batzuk arte ezagutzen genituen material guztiak, eroale, erdieroale edo isolatzaileak ziren, materialeko balentzia elektroien izae- raren arabera. Azken urteotan sikako arlo honetan burututako lanek eman dute bere fruitua, materiaren egoera berri bat aurkitu baita naturan [1]: isolatzaile topologikoa. Isolatzaile topologikoak material isolatzaileak dira baina ertza eroalea dute. Egoera eroale hauek dira material berri honen berezkotasuna. Egoerok sistemaren topologia dela eta existitzen dira eta sistemaren simetriaren bidez babestuta daudenez, deusez- taezinak dira. Hall isolatzaile kuantikoa izan zen isolatzaile topologikoen gaia teorikoki garatzen hasteko inspirazio iturria eta esperimentalki beranduago aurkitu ziren [2]. Lan ugari egiten ari da materiaren egoera berri honen teoria osatu eta era honetako material berriak aurkitzeko. Gaur egun isolatzaile topologiko ezagunenetarikoak kalogenuro fami- liakoak dira. Talde honetakoa da 2008.urtean estrainekoz aurkitu zen hiru dimentsiotako isolatzaile topologikoa: Bi1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las nanoestructuras han sido muy estudiadas debido a su importancia en aplicaciones tecnológicas y biomédicas, como por ejemplo el recubrimiento de los sensores y biosensores. Estas necesitan ser recubiertas para su protección y/o funcionalización. Un estudio sobre las superficies de nanopartículas magnéticas y esféricas (MNPs) de Fe y Ni reveló que el tolueno actúa como catalizador de reacciones de condensación de los componentes aromáticos formando estructuras gigantes, policíclicas e irregulares, creando así una especie de recubrimiento de carbono. También se ha estudiado la posibilidad de formar recubrimientos con carbono en películas de hierro y permalloy (FeNi) en tiempos largos de tratamiento de 1 año. En el presente trabajo, debido a los resultados anteriores para las películas delgadas de hierro, se ha estudiado el desarrollo del proceso de deposición del grafeno defectuoso a temperatura ambiente, sobre las superficies de las películas delgadas de hierro en periodos de entre unos días hasta medio año aproximadamente. Se ha hecho un estudio en función del tiempo de inmersión en tolueno de las propiedades estructurales y magnéticas de las películas de hierro depositadas sobre vidrio. Las películas de hierro han sido preparadas por el método de pulverización catódica y después sumergidas en tolueno. Las técnicas utilizadas para la caracterización estructural han sido, la difracción de Rayos-X, los estudios de microscopia electrónica de barrido (SEM) y la perfilómetría. La caracterización magnética se ha hecho con un magnetómetro de Kerr (MOKE) y un magnetómetro vibrante (VSM). Las muestras cristalizaban en el sistema cúbico FCC del grupo espacial Fm-3m, con parámetro de celda de 3.5922Ǻ. El tamaño de dominio coherente para los índices de Miller (110) ha ido aumentando a lo largo del tratamiento. Para el índice de Miller (211) el tamaño de dominio coherente ha disminuido. Este comportamiento se explica tendiendo en cuenta el modelo propuesto en la literatura científica del proceso de formación de las estructuras de grafeno defectuoso. El análisis de las imágenes de SEM y los correspondientes datos de la emisión de Rayos-X han confirmado la presencia del carbono en la superficie. La cantidad del carbono en la superficie de las películas de hierro aumenta con el incremento del tiempo de inmersión en tolueno. Ha sido posible detectar la presencia del carbono en la superficie después de 9 días de inmersión (por lo tanto, el proceso de las estructuras policíclicas e irregulares es relativamente rápido). La deposición del carbono no resulta en una formación de estructura uniforme, así que cuanto más largo es el tratamiento, más complicadas son las estructuras. Como resultado del tratamiento superficial durante aproximadamente medio año, se observa un aumento de rugosidad de un micrómetro aproximadamente. La diferencia entre las medidas de MOKE y VSM para el campo coercitivo y la remanencia, se explica teniendo en cuenta el proceso de oxidación de la superficie y la interacción de algunas partes de la película de hierro con el tolueno, que pueden causar la relajación de las tensiones. La imanación de saturación obtenida para las películas después del tiempo de tratamiento de 135 días es de 192 emu por gramo. La disminución de la imanación de saturación es debida a la oxidación de las películas por el contacto con la atmósfera y el tolueno. En un cálculo aproximado se ha llegado a la conclusión que dicha capa tiene un espesor de 50 nm, repartida en dos capas de 25 nm. De todo lo anterior y de la base de análisis de las propiedades estructurales y magnéticas de las películas delgadas de hierro sumergidas en tolueno para hacer el tratamiento superficial a temperatura ambiente, se concluye, que las estructuras policíclicas e irregulares de grafeno defectuoso se forman relativamente rápido. El tratamiento con el tolueno no causa muchos cambios en la estructura y en las propiedades magnéticas, se trata de procesos superficiales. La modificación in situ de películas de hierro en tolueno, puede ser candidato a método de protección y funcionalización de los sensores magnéticos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Montaje y calibración de un sistema de medida del efecto magnetocalórico y estudio de una aleación con memoria de forma

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detección y análisis de emociones en el habla de tres grabaciones reales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Un documento de PDF de 36 paginas sin contar apéndices. En castellano.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Historian zehar, greziar mitologiatik gaur egun arte , gizakiak ikusezin izatearekin amestu du. Hala ere, duela urte gutxi arte ez da benet an zientifikoki azaldu nola gauzatu amets hori . Tachi - ren lanetik [1 ] hasita , non transparentzia birtual bat lortzen den, metamaterialen mundura pasatzen da argi - izpiak nahi eran d esbideratuz eta modu honetan ikusezintasun a lortuz. Metamaterialak artifizialki sortutako mate rialak dira, laborategietan dis einatuak eta guk behar ditugun propietateez esleitu ak . Hau en bidez , ingurune baten permitibitate elektrikoa eta iragazkortasun magnetikoa , eta ondorioz handik pasatzen diren uhin elektromagnetikoak kontrolatzea lortzen da. Horrela, argiaren desbiderapen kontrolatua lortu nahi da , eta fenomeno hori deskribatzen duen formalismoari transformazioaren optik a deritzo . Honi esker, esater ako, ikusezintasun - estalki esferiko batek, modu teoriko batean nola funtzionatu ko lukeen kalkulatu eta simula daiteke. Hala ere, ikusezintasunaren zientzia k hasi besterik ez du egin eta oraindik lan handia dago egiteko arlo honen inguruan, oraindik ez b aita begi bistaz antzematen d en objektu rik iku sezin bihurtu

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indargetze handiko materialek energia barreiatzeko duten gaitasunean parte hartzen duten prozesuak aztertu dira. (Euskera)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hoy en día, el campo científico-tecnológico denomin ado espintrónica es cada vez más extenso y aunque haya varias definiciones, la más c ercana a lo que se trata en este trabajo es la que sigue: Denominamos espintrónica a un camp o de la física que explota el grado de libertad adicional que es el espín para guardar, co dificar, acceder, procesar y/o transmitir información de alguna manera. [1] El objetivo de este trabajo es hacer una introducci ón al campo de la espintrónica, exponiendo algunos conceptos básicos y describiendo algunos dispositivos que se usan en la espintrónica. El trabajo se dividirá en dos partes, la primera, a modo de resumen bibliográfico, recoge algunos efectos espintrónicos y dispositivos interesantes basados en los mismos. Para la segunda parte se ha hecho un trabaj o práctico mostrando el modo funcionamiento de uno de estos tipos de dispositivo s en particular, utilizando una simulación por computador

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gradu amaierako lan hau kiribilen kosmologia kuantikorako sarrera bat da. Lan honek 4 kapi- tulu ditu. Lehenengoan, sarrera bezala grabitazio kuantikoak izan duen bilakaera historikoa jaso da, halako teoria bat garatzeko motibazioak eta zailtasunak, eta honen garapenean kosmologia kuantikoak duen papera azalduz. Lanean, oro har, grabitazio kuantikoaren teoria bat eraikitzeko formalismo “kanonikoa” jarraitu da, alegia, erlatibitate orokorraren formulazio hamiltondarra era- biliz teoria kuantikoa garatzea. Bigarren kapituluan grabitazioaren teoria klasikoaren formulazio hamiltondarra garatu da, lehenik Arnowitt-Deser-Misner formalismoaren (Einstein-en geometro- dinamika bezala ere ezaguna denaren) bidez eta ondoren Ashtekar-en aldagaiak erabiliz. Bietan hamiltondar guztiz lotua lortzen da, hots, loturen konbinazio lineala den hamiltondarra. Lotu- ren bidezko formulazio hauen kuantizazioaren eta kribilen adierazpenaren oinarrizko aspektuak jaso dira bigarren kapituluan. Hirugarren kapituluan kosmologiaren teoria klasikoa Friedmann- Lemaˆ ıtre-Robertson-Walker metrika laua erabiliz azaltzen da era laburrean lehenik, eta ondoren Wheeler-DeWitt teoria kuantikoa eta kiribilen kosmologia kuantikoa eta hauek erabiliz lorturiko zenbait emaitza aipatzen dira. Azkenik, ondorioen atalarekin amaitzen da lana. Lana euskaraz idatzita dago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gradu amaierako lan honetan, LAPW metodoa aztertu da solidoen propietate elektronikoak era teorikoan ikertzeko eta efektu erlatibistek hauengan duten eragina zenbatesteko tresna teoriko bezala. Konkretuki spin-orbita elkarrekintzan zentratu gara, eta hau konputazionalki inplementatzeko bigarren bariazionalaren metodoa aztertu da. Bestalde, Spin-DFT teoriaren barruan spin-orbita kodifikatzen duen trukatze-korrelazio eremu bektorialaren azterketa labur bat egin da, ekarpen erlatibista beste ikuspuntu batetik aztertu eta informazio osagarria lortzeko asmoz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]El Módulo de Practicum se organiza en dos materias: Prácticas escolares (38 créditos ECTS), y Trabajo fin de grado (12 créditos ECTS). Las prácticas escolares se realizarán en los dos ciclos de Educación Infantil (0-3, 3-6) y en los tres de Primaria (1ª-2º, 3º-4º, 5º-6º). Al tratarse de un Practicum progresivo, los estudiantes de los grados de Magisterio cursan la materia a lo largo del segundo, tercer y cuarto curso (Practicum I, Practicum II y Practicum III) con contenidos que tienen continuidad y que suponen un nivel de competencia superior respecto el anterior. El Practicum supone para el alumnado una oportunidad de adquirir e integrar las habilidades, los conocimientos, las competencias y la práctica necesarios para el ejercicio de su profesión, así como una ocasión para reflexionar de forma individual y grupal acerca del aprendizaje realizado. El Practicum I pretende que el alumnado establezca un primer contacto como futuros profesionales con un centro escolar, y realice una observación de carácter global, integrando los conocimientos aprendidos en la Escuela de Magisterio, ajustándolos a la diversidad del aula, a la escuela y al entorno social de ésta, y dedicando una especial atención al tratamiento de género. El Practicum II, al que se refiere esta guía, corresponde al tercer curso y se centra en el desarrollo docente de experiencias de enseñanza y aprendizaje con alumnado de la etapa, la implicación en la vida del ciclo y etapa y el ejercicio de la autocrítica y la reflexión en relación al propio desarrollo formativo y profesional. Se pretende que los estudiantes reflexionen de forma crítica sobre su conocimiento práctico inicial puesto en acción en esos contextos y sobre las condiciones que determinan su forma de pensar y actuar. El Practicum III está relacionado con las menciones (minor) y con la participación en proyectos de innovación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]Las Prácticas Escolares se realizarán en los dos ciclos de Educación Infantil (0-3, 3-6) y en los tres de Educación Primaria (1º-2º, 3º-4º, 5º-6º). Al tratarse de un Prácticum progresivo, cada estudiante cursa la materia a lo largo del segundo, tercer y cuarto curso (Prácticum I, Prácticum II y Prácticum III) con contenidos que tienen continuidad y que suponen un nivel de competencia superior respecto el anterior. Además, el alumnado que en 4º curso se matricule en el minor de Educación Física deberá realizar su periodo de prácticas junto a una maestra o maestro especialista en esta materia, quien tutorizará sus prácticas. El Prácticum supone para el alumnado una oportunidad de adquirir e integrar las habilidades, los conocimientos, las competencias y la práctica necesarios para el ejercicio de su profesión, así como una ocasión para reflexionar de forma individual y grupal acerca del aprendizaje realizado y de la práctica llevada a cabo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kaluza-Klein teorien planteamendu orokorra aurkezten da, bai ezaugarri onak zein arazoak aipatuz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La estructura microscópica de una gran cantidad de materiales sólidos es cristalina. Es decir, sus moléculas, o grupos de moléculas, están ordenadas de forma regular en un espacio tridimensio- nal que se extiende a lo largo de distancias correspondientes a miles de dimensiones moleculares. Desde el punto de vista académico, los materiales cristalinos (o, simplemente, cristales ) son dis- tribuciones periódicas e infinitas de átomos. Es de esta periodicidad microscópica de la que se vale la Física del Estado Sólido y en particular, la Cristalografía, para simplificar el estudio de los materiales cristalinos. No obstante, ciertos materiales presentan una forma más compleja: están formados por dos o más cristales ( dominios ) de la misma especie que se juntan con una orientación relativa deter- minada. A estos cristales, objeto central del presente estudio, se les da el nombre de twins . Actualmente, los métodos más comunes para el análisis de estructuras cristalinas se basan en fenómenos de difracción causados por la interacción de la materia con un cierto tipo de haz, ya sea de rayos-X, de electrones o de neutrones. El diagrama de difracción revela, al menos en parte, la simetría del cristal y ayuda a clasificarlo debidamente. Por lo general, el diagrama de difracción de un solo cristal no suele ser difícil de interpretar. El problema llega cuando se quieren analizar los mencionados twins. En ese caso, dado que poseen más de un dominio, el diagrama de difracción que se observa es el resultado de la superposición de los diagramas individuales de cada uno de los cristales que conforman la muestra. Incluso conociendo el número de los dominios y su orientación relativa, entender el diagrama puede ser una tarea complicada