988 resultados para fire management


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In fire-prone regions, wildfire influences spatial and temporal patterns of landscape heterogeneity. The likely impacts of climate change on the frequency and intensity of wildfire highlights the importance of understanding how fire-induced heterogeneity may affect different components of the biota. Here, we examine the influence of wildfire, as an agent of landscape heterogeneity, on the distribution of arboreal mammals in fire-prone forests in south-eastern Australia. First, we used a stratified design to examine the role of topography, and the relative influence of fire severity and fire history, on the occurrence of arboreal mammals 2-3 years after wildfire. Second, we investigated the influence of landscape context on the occurrence of arboreal mammals at severely burnt sites. Forested gullies supported a higher abundance of arboreal mammals than slopes. Fire severity was the strongest influence, with abundance lower at severely burnt than unburnt sites. The occurrence of mammals at severely burned sites was influenced by landscape context: abundance increased with increasing amount of unburnt and understorey-only burnt forest within a 1 km radius. These results support the hypothesis that unburnt forest and moist gullies can serve as refuges for fauna in the post-fire environment and assist recolonization of severely burned forest. They highlight the importance of spatial heterogeneity created by wildfire and the need to incorporate spatial aspects of fire regimes (e.g., creation and protection of refuges) for fire management in fire-prone landscapes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The pine rocklands of South Florida, characterized by a rich herbaceous flora with many narrowly endemic taxa beneath an overstory of south Florida slash pine (Pinus elliottii var. densa), are found in three areas: the Miami Rock Ridge of southeastern peninsular Florida, the Lower Florida Keys, and slightly elevated portions of the southern Big Cypress National Preserve. Fire is an important element in these ecosystems, since in its absence the pine canopy is likely to be replaced by dense hardwoods, resulting in loss of the characteristic pineland herb flora. Prescribed fire has been used in Florida Keys pine forests since the creation of the National Key Deer Refuge (NKDR), with the primary aim of reducing fuels. Because fire can also be an effective tool in shaping ecological communities, we conducted a 4-year research study which explored a range of fire management options in NKDR. The intent of the study was to provide the Fish and Wildlife Service and other land managers with information regarding when and where to burn in order to perpetuate these unique forests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent research makes clear that much of the Everglade’s flora and fauna have evolved to tolerate or require frequent fires. Nevertheless, restoration of the Everglades has thus far been conceptualized as primarily a water reallocation project. These two forces are directly linked by the influence of water flows on fire fuel moisture content, and are indirectly linked through a series of complex feedback loops. This interaction is made more complex by the alteration and compartmentalization of current water flows and fire regimes, the lack of communication between water and fire management agencies, and the already imperiled state of many local species. It is unlikely, therefore, that restoring water flows will automatically restore the appropriate fire regimes, leaving the prospect of successful restoration in some doubt. The decline of the Cape Sable seaside sparrow, and its potential for recovery, illustrates the complexity of the situation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of biodiversity conservation and fire risk reduction, or whether the maximization of one objective comes at a detriment to the other. Using a fixed budget and number of homes slated for development, we simulated 20 years of housing growth under alternative conservation selection strategies, and then projected the mean risk of fires destroying structures and the area and configuration of important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If no conservation lands were purchased, or if purchases were prioritized based on cost or likelihood of development, both the projected fire risk and biodiversity impacts were much higher than if conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region. These results likely generalize to any place where high species richness overlaps with hazardous wildland vegetation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In fire-prone landscapes, knowing when vegetation was last burnt is important for understanding how species respond to fire and to develop effective fire management strategies. However, fire history is often incomplete or non-existent. We developed a fire-age prediction model for two mallee woodland tree species in southern Australia. The models were based on stem diameters from ∼1172 individuals surveyed along 87 transects. Time since fire accounted for the greatest proportion of the explained variation in stem diameter for our two mallee tree species but variation in mean stem diameters was also influenced by local environmental factors. We illustrate a simple tool that enables time since fire to be predicted based on stem diameter and local covariates. We tested our model against new data but it performed poorly with respect to the mapped fire history. A combination of different covariate effects, variation in among-tree competition, including above- and below-ground competition, and unreliable fire history may have contributed to poor model performance. Understanding how the influence of covariates on stem diameter growth varies spatially is critical for determining the generality of models that predict time since fire. Models that were developed in one region may need to be independently verified before they can be reliably applied in new regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examined the abundance of arboreal marsupials in topographic fire refuges after a major fire in a stand-replacing crown-fire forest ecosystem. We surveyed the abundance of arboreal marsupials across 48 sites in rainforest gullies burnt to differing extents by the 2009 fires in the mountain ash (Eucalyptus regnans) forests of the Victorian Central Highlands, Australia. The greater glider (Petauroides volans) was less abundant within the extent of the 2009 fire. The mountain brushtail possum (Trichosurus cunninghami) was more abundant within the extent of the 2009 fire, particularly within unburnt peninsulas protruding into burnt areas from unburnt edges. Our results indicate that fire refuges may facilitate the persistence of some species within extensively burnt landscapes. Additional work should seek to clarify this finding and identify the demographic mechanisms underlying this response.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New knowledge about the responses of species to fire is needed to plan for biodiversity conservation in the face of changing fire regimes. However, the knowledge that is acquired may be influenced by the sampling method and the taxonomic resolution of a study. To investigate these potential sampling biases, we examined invertebrate responses to time since fire in mallee woodlands of southern Australia. Using a large-scale replicated study system, we sampled over 60000 invertebrates with large pitfall traps, wet pitfall traps and sweep nets, and undertook analyses at morphospecies and order level. Large pitfalls and sweep nets detected several strong fire effects, whereas wet pitfall traps detected few effects. Invertebrate abundance in sweep nets was highest shortly after fire because of grasshopper outbreaks. Several additional morphospecies showed strong preferences for different stages in the post-fire succession. In contrast with morphospecies effects, analyses at order level either failed to detect fire effects or were driven by the most abundant species. For fire research to produce credible results with the potential to guide management, it must use a range of sampling techniques and undertake analyses at (morpho)species level. Homogeneous fire management, such as fire suppression in fragmented landscapes or widespread frequent burning for asset protection, is likely to cause declines in fire-affected invertebrates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Summary: Conservation of biodiversity in fire-prone regions depends on understanding responses to fire in animal communities and the mechanisms governing these responses. We collated data from an Australian semi-arid woodland reptile community (4796 individuals captured over 6 years) to: (i) determine the ability of commonly used shorter-term (2 years) surveys to detect reptile responses to time since fire (TSF) and (ii) investigate whether ecological traits of species reliably predicted their responses to fire. Of 16 reptile species analysed, four had responses to TSF consistent with shorter-term surveys and three showed no response to TSF. Nine species had responses to TSF not detected in previous studies using smaller but substantial subsets of the same data. Among the 13 affected species, times of peak abundance ranged from 1 to 50 years after fire. Nocturnal, burrowing species tended to be early successional and leaf-litter dwellers to be late successional, but these were only weak trends. Synthesis and applications. We found only limited support for a generalizable, trait-based model of succession in reptiles. However, our study revealed that the majority of common reptile species in our study region specialize on a post-fire successional stage and may therefore become threatened if homogeneous fire regimes predominate. Our study highlights the importance of interpreting results from time- or sample-limited fire studies of reptiles with the knowledge that many ecological responses may not have been detected. In such cases, an adaptive or precautionary approach to fire management may be necessary. We found only limited support for a generalizable, trait-based model of succession in reptiles. However, our study revealed that the majority of common reptile species in our study region specialize on a post-fire successional stage and may therefore become threatened if homogeneous fire regimes predominate. Our study highlights the importance of interpreting results from time- or sample-limited fire studies of reptiles with the knowledge that many ecological responses may not have been detected. In such cases, an adaptive or precautionary approach to fire management may be necessary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With rapid urban expansion, biodiversity conservation and human asset protection often require different regimes for managing wildfire risk. We conducted a controlled, replicated experiment to optimise habitat restoration for the threatened Australian pink-tailed worm-lizard, Aprasia parapulchella while reducing fire fuel load in a rapidly developing urban area. We used dense addition of natural rock (30 % cover) and native grass revegetation (Themedatriandra and Poasieberiana) to restore critical habitat elements. Combinations of fire and herbicide (Glyphosate) were used to reduce fuel load and invasive exotic species. Rock restoration combined with herbicide application met the widest range of restoration goals: it reduced fire fuel load, increased ant occurrence (the primary prey of A. parapulchella) in the short-term and increased the growth and survival of native grasses. Lizards colonised the restored habitat within a year of treatment. Our study documents an innovative way by which conflicts between biodiversity conservation and human asset protection can be overcome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Chihuahua desert is one of the most biologically diverse ecosystems in the world, but suffers serious degradation because of changes in fire regimes resulting in large catastrophic fires. My study was conducted in the Sierra La Mojonera (SLM) natural protected area in Mexico. The purpose of this study was to implement the use of FARSITE fire modeling as a fire management tool to develop an integrated fire management plan at SLM. Firebreaks proved to detain 100% of wildfire outbreaks. The rosetophilous scrub experienced the fastest rate of fire spread and lowland creosote bush scrub experienced the slowest rate of fire spread. March experienced the fastest rate of fire spread, while September experienced the slowest rate of fire spread. The results of my study provide a tool for wildfire management through the use geospatial technologies and, in particular, FARSITE fire modeling in SLM and Mexico.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Altered fire regimes threaten the persistence of many animal species globally, thus understanding how fire affects demographic processes is critical for conservation. Using 2. years of mark-recapture data from the Australian gecko Nephrurus stellatus, we investigated the effect of fire on (i) detectability to reliably measure post-fire changes in abundance, and (ii) survival and reproductive rates to investigate the mechanisms of successional change. Data were collected from two conservation reserves each with three different fire categories based on time since the last fire "Early", "medium" and "late" sites had 2-3, 7-9 and 42-48. years since fire, respectively. A robust design modelling framework was used to estimate the effect of fire category on abundance, survival and capture probability while also examining the influence of temperature and behaviour on detectability. Geckos showed trap-shy behaviour and detectability increased significantly with increasing temperature but was not affected by time since fire. Accounting for detectability, geckos were more abundant in the medium than the early sites, and were rare in the late sites. Although trends in survival are more difficult to address with short-term data, our results showed lower monthly survival rates, but higher fecundity in the early than the medium sites. These results were possibly related to successional changes in predation, the thermal environment, and food availability. We demonstrated how mark-recapture analysis can show the causes of animal fire responses while realistically accounting for detectability. Such information is necessary to provide a predictive framework to guide fire management for biodiversity. .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pricing greenhouse gas emissions is a burgeoning and possibly lucrative financial means for climate change mitigation. Emissions pricing is being used to fund emissions-abatement technologies and to modify land management to improve carbon sequestration and retention. Here we discuss the principal land-management options under existing and realistic future emissions-price legislation in Australia, and examine them with respect to their anticipated direct and indirect effects on biodiversity. The main ways in which emissions price-driven changes to land management can affect biodiversity are through policies and practices for (1) environmental plantings for carbon sequestration, (2) native regrowth, (3) fire management, (4) forestry, (5) agricultural practices (including cropping and grazing), and (6) feral animal control. While most land-management options available to reduce net greenhouse gas emissions offer clear advantages to increase the viability of native biodiversity, we describe several caveats regarding potentially negative outcomes, and outline components that need to be considered if biodiversity is also to benefit from the new carbon economy. Carbon plantings will only have real biodiversity value if they comprise appropriate native tree species and provide suitable habitats and resources for valued fauna. Such plantings also risk severely altering local hydrology and reducing water availability. Management of regrowth post-agricultural abandonment requires setting appropriate baselines and allowing for thinning in certain circumstances, and improvements to forestry rotation lengths would likely increase carbon-retention capacity and biodiversity value. Prescribed burning to reduce the frequency of high-intensity wildfires in northern Australia is being used as a tool to increase carbon retention. Fire management in southern Australia is not readily amenable for maximising carbon storage potential, but will become increasingly important for biodiversity conservation as the climate warms. Carbon price-based modifications to agriculture that would benefit biodiversity include reductions in tillage frequency and livestock densities, reductions in fertiliser use, and retention and regeneration of native shrubs; however, anticipated shifts to exotic perennial grass species such as buffel grass and kikuyu could have net negative implications for native biodiversity. Finally, it is unlikely that major reductions in greenhouse gas emissions arising from feral animal control are possible, even though reduced densities of feral herbivores will benefit Australian biodiversity greatly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 2400 year record of environmental change is reported from a wetland on Bentinck Island in the southern Gulf of Carpentaria, northern Australia. Three phases of wetland development are identified, with a protected coastal setting from ca. 2400 to 500 years ago, transitioning into an estuarine mangrove forest from ca. 500 years ago to the 1940s, and finally to a freshwater swamp over the past +60 years. This sequence reflects the influence of falling sea-levels, development of a coastal dune barrier system, prograding shorelines, and an extreme storm (cyclone) event. In addition, there is clear evidence of the impacts that human abandonment and resettlement have on the island's fire regimes and vegetation. A dramatic increase in burning and vegetation thickening was observed after the cessation of traditional Indigenous Kaiadilt fire management practices in the 1940s, and was then reversed when people returned to the island in the 1980s. In terms of the longer context for human occupation of the South Wellesley Archipelago, it is apparent that the mangrove phase provided a stable and productive environment that was conducive for human settlement of this region over the past 1000 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The accurate assessment of trends in the woody structure of savannas has important implications for greenhouse accounting and land-use industries such as pastoralism. Two recent assessments of live woody biomass change from north-east Australian eucalypt woodland between the 1980s and 1990s present divergent results. The first estimate is derived from a network of permanent monitoring plots and the second from woody cover assessments from aerial photography. The differences between the studies are reviewed and include sample density, spatial scale and design. Further analyses targeting potential biases in the indirect aerial photography technique are conducted including a comparison of basal area estimates derived from 28 permanent monitoring sites with basal area estimates derived by the aerial photography technique. It is concluded that the effect of photo-scale; or the failure to include appropriate back-transformation of biomass estimates in the aerial photography study are not likely to have contributed significantly to the discrepancy. However, temporal changes in the structure of woodlands, for example, woodlands maturing from many smaller trees to fewer larger trees or seasonal changes, which affect the relationship between cover and basal area could impact on the detection of trends using the aerial photography technique. It is also possible that issues concerning photo-quality may bias assessments through time, and that the limited sample of the permanent monitoring network may inadequately represent change at regional scales