977 resultados para field line


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using data from the EISCAT (European Incoherent Scatter) VHF radar and DMSP (Defense Meteorological Satellite Program) spacecraft passes, we study the motion of the dayside open-closed field line boundary during two substorm cycles. The satellite data show that the motions of ion and electron temperature boundaries in EISCAT data, as reported by Moen et al. (2004), are not localised around the radar; rather, they reflect motions of the open-closed field line boundary at all MLT throughout the dayside auroral ionosphere. The boundary is shown to erode equatorward when the IMF points southward, consistent with the effect of magnetopause reconnection. During the substorm expansion and recovery phases, the dayside boundary returns poleward, whether the IMF points northward or southward. However, the poleward retreat was much faster during the substorm for which the IMF had returned to northward than for the substorm for which the IMF remained southward – even though the former substorm is much the weaker of the two. These poleward retreats are consistent with the destruction of open flux at the tail current sheet. Application of a new analysis of the peak ion energies at the equatorward edge of the cleft/cusp/mantle dispersion seen by the DMSP satellites identifies the dayside reconnection merging gap to extend in MLT from about 9.5 to 15.5 h for most of the interval. Analysis of the boundary motion, and of the convection velocities seen near the boundary by EISCAT, allows calculation of the reconnection rate (mapped down to the ionosphere) from the flow component normal to the boundary in its own rest frame. This reconnection rate is not, in general, significantly different from zero before 06:45 UT (MLT<9.5 h) – indicating that the X line footprint expands over the EISCAT field-of-view to earlier MLT only occasionally and briefly. Between 06:45 UT and 12:45UT (9.5

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A continuous band of high ion temperature, which persisted for about 8 h and zigzagged north-south across more than five degrees in latitude in the dayside (07:00– 15:00MLT) auroral ionosphere, was observed by the EISCAT VHF radar on 23 November 1999. Latitudinal gradients in the temperature of the F-region electron and ion gases (Te and Ti , respectively) have been compared with concurrent observations of particle precipitation and field-perpendicular convection by DMSP satellites, in order to reveal a physical explanation for the persistent band of high Ti , and to test the potential role of Ti and Te gradients as possible markers for the open-closed field line boundary. The north/south movement of the equatorward Ti boundary was found to be consistent with the contraction/expansion of the polar cap due to an unbalanced dayside and nightside reconnection. Sporadic intensifications in Ti , recurring on _10-min time scales, indicate that frictional heating was modulated by time-varying reconnection, and the band of high Ti was located on open flux. However, the equatorward Ti boundary was not found to be a close proxy of the open-closed boundary. The closest definable proxy of the open-closed boundary is the magnetosheath electron edge observed by DMSP. Although Te appears to be sensitive to magnetosheath electron fluxes, it is not found to be a suitable parameter for routine tracking of the open-closed boundary, as it involves case dependent analysis of the thermal balance. Finally, we have documented a region of newly-opened sunward convecting flux. This region is situated between the convection reversal boundary and the magnetosheath electron edge defining the openclosed boundary. This is consistent with a delay of several minutes between the arrival of the first (super-Alfv´enic) magnetosheath electrons and the response in the ionospheric convection, conveyed to the ionosphere by the interior Alfv´en wave. It represents a candidate footprint of the low-latitude boundary mixing layer on sunward convecting open flux

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interpretation of structure in cusp ion dispersions is important for helping to understand the temporal and spatial structure of magnetopause reconnection. “Stepped” and “sawtooth” signatures have been shown to be caused by temporal variations in the reconnection rate under the same physical conditions for different satellite trajectories. The present paper shows that even for a single satellite path, a change in the amplitude of any reconnection pulses can alter the observed signature and even turn sawtooth into stepped forms and vice versa. On 20 August 1998, the Defense Meteorological Satellite Program (DMSP) craft F-14 crossed the cusp just to the south of Longyearbyen, returning on the following orbit. The two passes by the DMSP F-14 satellites have very similar trajectories and the open-closed field line boundary (OCB) crossings, as estimated from the SSJ/4 precipitating particle data and Polar UVI images, imply a similarly-shaped polar cap, yet the cusp ion dispersion signatures differ substantially. The cusp crossing at 08:54 UT displays a stepped ion dispersion previously considered to be typical of a meridional pass, whereas the crossing at 10:38 UT is a sawtooth form ion dispersion, previously considered typical of a satellite travelling longitudinally with respect to the OCB. It is shown that this change in dispersed ion signature is likely to be due to a change in the amplitude of the pulses in the reconnection rate, causing the stepped signature. Modelling of the low-energy ion cutoff under different conditions has reproduced the forms of signature observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study a brightening of the Lyman-alpha emission in the cusp which occurred in response to a short-lived southward turning of the interplanetary magnetic field (IMF) during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992). We use the numerical cusp ion precipitation model of Lockwood and Davis (1996), along with modelled Lyman-_ emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-alpha intensities with oxygen emissions observed simultaneously by the SI-13 channel of the FUV instrument offers an opportunity to test whether or not the clock angle dependence is consistent with the “component” or the “anti-parallel” reconnection hypothesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the postmidnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms−1) exists poleward of a region of low HF spectral width (<200 ms^{−1}). Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated substorm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT) on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms−1) have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiplepeak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to the data presented here. Since the regions of high spectral width are observed both on closed and open field lines the use of the boundary between low and high spectral width as an ionospheric proxy for the open/closed field line boundary is not a simple matter, if indeed it is possible at all.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Observations from the EISCAT VHF incoherent scatter radar system in northern Norway, during a run of the common programme CP-4, reveal a series of polewardpropagating F-region electron density enhancements in the pre-noon sector on 23 November 1999. These plasma density features, which are observed under conditions of a strongly southward interplanetary magnetic field, exhibit a recurrence rate of under 10 min and appear to emanate from the vicinity of the open/closed field-line boundary from where they travel into the polar cap; this is suggestive of their being an ionospheric response to transient reconnection at the dayside magnetopause (flux transfer events). Simultaneous with the density structures detected by the VHF radar, polewardmoving radar auroral forms (PMRAFs) are observed by the Finland HF coherent scatter radar. It is thought that PMRAFs, which are commonly observed near local noon by HF radars, are also related to flux transfer events, although the specific mechanism for the generation of the field-aligned irregularities within such features is not well understood. The HF observations suggest, that for much of their existence, the PMRAFs trace fossil signatures of transient reconnection rather than revealing the footprint of active reconnection itself; this is evidenced not least by the fact that the PMRAFs become narrower in spectral width as they evolve away from the region of more classical, broad cusp scatter in which they originate. Interpretation of the HF observations with reference to the plasma parameters diagnosed by the incoherent scatter radar suggests that as the PMRAFs migrate away from the reconnection site and across the polar cap, entrained in the ambient antisunward flow, the irregularities therein are generated by the presence of gradients in the electron density, with these gradients having been formed through structuring of the ionosphere in the cusp region in response to transient reconnection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On 7 December 2000, during 13:30-15:30 UT the MIRACLE all-sky camera at Ny Alesund observed auroras at high-latitudes (MLAT similar to 76) simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at similar to 16:00-18:00 MLT). The location of the auroras (near the ionospheric convection reversal boundary) and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Alesund especially during periods of negative IMF B-Z. In addition, the Cluster spacecraft experienced periodic (T similar to 4 - 6 min) encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5) and occasionally periodic variations (T - 2 - 3 min) in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF BZ stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T similar to 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR) and approached the post-noon dayside magnetopause over Greenland between 13:00 and 14:00 UT During that interval, a sudden reorganisation of the high-latitude dayside convection pattern accurred after 13:20 UT most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Sondre Stromfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The destruction of the four Cluster craft was a major loss to the planned ISTP effort, of which studies of the magnetopause and low-latitude boundary layer (LLBL) were an important part. While awaiting the re-flight mission, Cluster-II, we have been applying advances in our understanding made using other ISTP craft (like Polar and Wind) and using ground-based facilities (in particular the EISCAT incoherent scatter radars and the SuperDARN HF coherent radars) to measurements of the LLBL made in 1984 and 1985 by the AMPTE-UKS and -IRM spacecraft pair. In particular, one unexplained result of the AMPTE mission was that the electron characteristics could, in nearly all cases, order independent measurements near the magnetopause, such as the magnetic field, ion temperatures and the plasma flow. Studies of the cusp have shown that the precipitation is ordered by the time-elapsed since the field line was opened by reconnection. This insight has allowed us to reanalyse the AMPTE data and show that the ordering by the transition parameter is also due to the variation of time elapsed since reconnection, with the important implication that reconnection usually coats most of the dayside magnetopause with at least some newly-opened field lines. In addition, we can use the electron characteristics to isolate features like RDs, slow-mode shocks and slow-mode expansion fans. The ion characteristics can be used to compute the reconnection rate. We here retrospectively apply these new techniques, developed in the ISTP era, to a much-studied flux transfer event observed by the AMPTE satellites. As a result, we gain new understanding of its cause and structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ground-based observations of dayside auroral forms and magnetic perturbations in the arctic sectors of Svalbard and Greenland, in combination with the high-resolution measurements of ionospheric ion drift and temperature by the EISCAT radar, are used to study temporal/spatial structures of cusp-type auroral forms in relation to convection. Large-scale patterns of equivalent convection in the dayside polar ionosphere are derived from the magnetic observations in Greenland and Svalbard. This information is used to estimate the ionospheric convection pattern in the vicinity of the cusp/cleft aurora. The reported observations, covering the period 0700-1130 UT, on January 11, 1993, are separated into four intervals according to the observed characteristics of the aurora and ionospheric convection. The morphology and intensity of the aurora are very different in quiet and disturbed intervals. A latitudinally narrow zone of intense and dynamical 630.0 nm emission equatorward of 75 degrees MLAT, was observed during periods of enhanced antisunward convection in the cusp region. This (type 1 cusp aurora) is considered to be the signature of plasma entry via magnetopause reconnection at low magnetopause latitudes, i.e. the low-latitude boundary layer (LLB I,). Another zone of weak 630.0 nm emission (type 2 cusp aurora) was observed to extend up to high latitudes (similar to 79 degrees MLAT) during relatively quiet magnetic conditions, when indications of reverse (sunward) convection was observed in the dayside polar cap. This is postulated to be a signature of merging between a northward directed IMF (B-z > 0) and the geomagnetic field poleward of the cusp. The coexistence of type 1 and 2 auroras was observed under intermediate circumstances. The optical observations from Svalbard and Greenland were also used to determine the temporal and spatial evolution of type 1 auroral forms, i.e. poleward-moving auroral events occurring in the vicinity of a rotational convection reversal in the early post-noon sector. Each event appeared as a local brightening at the equatorward boundary of the pre-existing type 1 cusp aurora, followed by poleward and eastward expansions of luminosity. The auroral events were associated with poleward-moving surges of enhanced ionospheric convection and F-layer ion temperature as observed by the EISCAT radar in Tromso. The EISCAT ion flow data in combination with the auroral observations show strong evidence for plasma flow across the open/closed field line boundary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that the open magnetosphere model can reproduce both the down-going and the up-going magnetosheath ions seen in the cusp and mantle regions by the Polar satellite at middle altitudes. ?he pass studied shows a series of discontinuities in the ion dispersion, most of which are shown to arise from pulses of magnetopause reconnection rate. A total of 9 pulses are detected in an interval estimated to be about 30 min long, giving a mean repetition period of about 3 min: they vary in length between 0.5 min and 3.5 min and are separated by periods of much slower reconnection of duration 1-3 min. One step is not as predicted for reconnection rate pulses but is explained in terms of compressive motions caused by a pulse of solar wind dynamic pressure. The reconnection site is found to be 16 +/- 3 R-E from the ionosphere along the separatrix field line, placing it at low latitudes on the dayside magnetopause.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The polar cap boundary is a subject of central importance to current magnetosphere-ionosphere research and its applications in “space weather” activities. The problems are that it has a number of definitions, and that the most physically meaningful definition (namely the open-closed field line boundary) is very difficult to identify in observations. New understanding of the importance of the structure and dynamics of the boundary region made the time right for a meeting reviewing our knowledge in this area. The Advanced Study Institute (ASI) on Svalbard in June 1997 discussed the boundary on both the dayside and the nightside, mapping magnetically to the dayside magnetopause and to tail plasma sheet/lobe interface, respectively. We held a “brainstorming” session, in which different ideas which arose from the presented papers were discussed and developed, and a summary session, in which session convenors gave a personal view of progress that has been made and problems which still need solving. Both were designed as ways of promoting further discussion. This paper attempts to distil some of the themes that emerged from these discussions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical simulations are presented of the ion distribution functions seen by middle-altitude spacecraft in the low-latitude boundary layer (LLBL) and cusp regions when reconnection is, or has recently been, taking place at the equatorial magnetopause. From the evolution of the distribution function with time elapsed since the field line was opened, both the observed energy/observation-time and pitch-angle/energy dispersions are well reproduced. Distribution functions showing a mixture of magnetosheath and magnetospheric ions, often thought to be a signature of the LLBL, are found on newly opened field lines as a natural consequence of the magnetopause effects on the ions and their flight times. In addition, it is shown that the extent of the source region of the magnetosheath ions that are detected by a satellite is a function of the sensitivity of the ion instrument . If the instrument one-count level is high (and/or solar-wind densities are low), the cusp ion precipitation detected comes from a localised region of the mid-latitude magnetopause (around the magnetic cusp), even though the reconnection takes place at the equatorial magnetopause. However, if the instrument sensitivity is high enough, then ions injected from a large segment of the dayside magnetosphere (in the relevant hemisphere) will be detected in the cusp. Ion precipitation classed as LLBL is shown to arise from the low-latitude magnetopause, irrespective of the instrument sensitivity. Adoption of threshold flux definitions has the same effect as instrument sensitivity in artificially restricting the apparent source region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transition parameter is based on the electron characteristics close to the Earth's dayside magnetopause, but reveals systematic ordering of other, independent, data such as the ion flow, density and temperature and the rientation and strength of the magnetic field. Potentially, therefore, it is a very useful tool for resolving ambiguities in a sequence of satellite data caused by the effects of structure and motion of the boundary; however, its application has been limited because there has been no clear understanding of how it works. We present an analysis of data from the AMPTE-UKS satellite which shows that the transition parameter orders magnetopause data because magnetic reconnection generates newly-opened field lines which coat the boundary: a direct relationship is found with the time elapsed since the boundary-layer field line was opened. A simple model is used to reproduce this behaviour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early in 1996, the latest of the European incoherent-scatter (EISCAT) radars came into operation on the Svalbard islands. The EISCAT Svalbard Radar (ESR) has been built in order to study the ionosphere in the northern polar cap and in particular, the dayside cusp. Conditions in the upper atmosphere in the cusp region are complex, with magnetosheath plasma cascading freely into the atmosphere along open magnetic field lines as a result of magnetic reconnection at the dayside magnetopause. A model has been developed to predict the effects of pulsed reconnection and the subsequent cusp precipitation in the ionosphere. Using this model we have successfully recreated some of the major features seen in photometer and satellite data within the cusp. In this paper, the work is extended to predict the signatures of pulsed reconnection in ESR data when the radar is pointed along the magnetic field. It is expected that enhancements in both electron concentration and electron temperature will be observed. Whether these enhancements are continuous in time or occur as a series of separate events is shown to depend critically on where the open/closed field-line boundary is with respect to the radar. This is shown to be particularly true when reconnection pulses are superposed on a steady background rate.