313 resultados para ferroelectrics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made to unequivocally identify the influence that inhomogeneous strain fields, surrounding point defects, have on the functional properties of thin film ferroelectrics. Single crystal thin film lamellae of BaTiO3 have been integrated into capacitor structures, and the functional differences between those annealed in oxygen and those annealed in nitrogen have been mapped. Key features, such as the change in the paraelectric-ferroelectric phase transition from first to second order were noted and found to be consistent with mean field modeling predictions for the effects of inhomogeneous strain. Switching characteristics appeared to be unaffected, suggesting that point defects have a low efficacy in domain wall pinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several factors which make the investigation and understanding of nanoscale ferroelectrics particularly timely and important. Firstly, there is a market pressure, primarily from the electronics industry, to integrate ferroelectrics into devices with progressive decreases in size and increases in morphological complexity. This is perhaps best illustrated through the roadmaps for product development in FeRAM (Ferroelectric Randorn Access Memory) where the need for increases in bit density will require a move from 2D planar capacitor structures to 3D trenched capacitors in the next few years. Secondly, there is opportunity for novel exploration, as it is only relatively recently that developments in thin film growth of complex oxides, self-assembly techniques and high-resolution 'top-down' patterning have converged to allow the fabrication of isolated and well-defined ferroelectric nanoshapes, the properties of which are not known. Thirdly, there is an expectation that the behaviour of small scale ferroelectrics will be different from bulk, as this group of functional materials is highly sensitive to boundary/surface conditions, which are expected to dominate the overall response when sizes are reduced into the nanoscale regime. This feature article attempts to introduce some of the current areas of discovery and debate surrounding studies on ferroelectrics at the nanoscale. The focus is directed primarily at the search for novel size-related properties and behaviour which are not necessarily observed in bulk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of an ongoing programme to evaluate the extent to which external morphology alters domain wall mobility in ferroelectrics, the electrical switching characteristics of single-crystal BaTiO3 nanorods and thin film plates have been measured and compared. It was found that ferroelectric nanorods were more readily switched than thin plates; increasing the shape constraint therefore appears to enhance switchability. This observation is broadly consistent with previous work, in which local notches patterned along the length of nanorods enhanced switching (McMillen et al 2010 Appl. Phys. Lett. 96 042904), while antinotches had the opposite effect (McQuaid et al 2010 Nano Lett. 10 3566). In this prior work, local enhancement and denudation of the electric field was expected at the notch and antinotch sites, respectively, and this was thought to be the reason for the differences in switching behaviour observed. However, for the simple nanorods and plates investigated here, no differences in the electric field distributions are expected. To rationalise the functional measurements, domain development during switching was imaged directly by piezoresponse force microscopy. A two-stage process was identified, in which narrow needle-like reverse domains initially form across the entire interelectrode gap and then subsequently coarsen through domain wall propagation perpendicular to the applied electric field. To be consistent with the electrical switching data, we suggest that the initial formation of needle domains occurs more readily in the nanorods than in the plates.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very recent experimental and theoretical work has sought to find out whether or not complex arrangements of dipoles (such as flux-closure, vortex or skyrmion patterns) exist in ferroelectrics. While there is undoubtedly still considerable work to be done, enough insight has now been gained to warrant a brief discussion of progress to date. This review article attempts to undertake such a discussion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear optics is an essential component of modern laser systems and optoelectronic devices. It has also emerged as an important tool in probing the electronic, vibrational, magnetic, and crystallographic structure of materials ranging from oxides and metals, to polymers and biological samples. This review focuses on the specific technique of optical second harmonic generation (SHG), and its application in probing ferroelectric complex oxide crystals and thin films. As the dominant SHG interaction mechanism exists only in materials that lack inversion symmetry, SHG is a sensitive probe of broken inversion symmetry, and thus also of bulk polar phenomena in materials. By performing in-situ SHG polarimetry experiments in different experimental conditions such as sample orientation, applied electric field, and temperature, one can probe ferroelectric hysteresis loops and phase transitions. Careful modeling of the polarimetry data allows for the determination of the point group symmetry of the crystal. In epitaxial thin films with a two-dimensional arrangement of well-defined domain orientations, one can extract information about intrinsic material properties such as nonlinear coefficients, as well as microstructural information such as the local statistics of the different domain variants being probed. This review presents several detailed examples of ferroelectric systems where such measurements and modeling are performed. The use of SHG microscopic imaging is discussed, and its ability to reveal domain structures and phases not normally visible with linear optics is illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial tetragonal 425 and 611 nm thick Pb(ZrTi)O (PZT) films are deposited by pulsed laser deposition on SrRuO-coated (100) SrTiO 24° tilt angle bicrystal substrates to create a single PZT grain boundary with a well-defined orientation. On either side of the bicrystal boundary, the films show square hysteresis loops and have dielectric permittivities of 456 and 576, with loss tangents of 0.010 and 0.015, respectively. Using piezoresponse force microscopy (PFM), a decrease in the nonlinear piezoelectric response is observed in the vicinity (720-820 nm) of the grain boundary. This region represents the width over which the extrinsic contributions to the piezoelectric response (e.g., those associated with the domain density/configuration and/or the domain wall mobility) are influenced by the presence of the grain boundary. Transmission electron microscope (TEM) images collected near and far from the grain boundary indicate a strong preference for (101)/(1-01) type domain walls at the grain boundary, whereas (011)/(01-1) and (101)/(1-01) are observed away from this region. It is proposed that the elastic strain field at the grain boundary interacts with the ferro-electric/elastic domain structure, stabilizing (101)/(1-01) rather than (011)/(01-1) type domain walls, which inhibits domain wall motion under applied field and decreases non-linearity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-performance piezoelectrics are lead-based solid solutions that exhibit a so-called morphotropic phase boundary, which separates two competing phases as a function of chemical composition; as a consequence, an intermediate low-symmetry phase with a strong piezoelectric effect arises. In search for environmentally sustainable lead-free alternatives that exhibit analogous characteristics, we use a network of competing domains to create similar conditions across thermal inter-ferroelectric transitions in simple, lead-free ferroelectrics such as BaTiO 3 and KNbO 3. Here we report the experimental observation of thermotropic phase boundaries in these classic ferroelectrics, through direct imaging of low-symmetry intermediate phases that exhibit large enhancements in the existing nonlinear optical and piezoelectric property coefficients. Furthermore, the symmetry lowering in these phases allows for new property coefficients that exceed all the existing coefficients in both parent phases. Discovering the thermotropic nature of thermal phase transitions in simple ferroelectrics thus presents unique opportunities for the design of 'green' high-performance materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple meso-scale capacitor structures have been made by incorporating thin (300 nm) single crystal lamellae of KTiOPO4 (KTP) between two coplanar Pt electrodes. The influence that either patterned protrusions in the electrodes or focused ion beam milled holes in the KTP have on the nucleation of reverse domains during switching was mapped using piezoresponse force microscopy imaging. The objective was to assess whether or not variations in the magnitude of field enhancement at localised “hot-spots,” caused by such patterning, could be used to both control the exact locations and bias voltages at which nucleation events occurred. It was found that both the patterning of electrodes and the milling of various hole geometries into the KTP could allow controlled sequential injection of domain wall pairs at different bias voltages; this capability could have implications for the design and operation of domain wall electronic devices, such as memristors, in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe some unsolved problems of current interest; these involve quantum critical points in
ferroelectrics and problems which are not amenable to the usual density functional theory, nor to
classical Landau free energy approaches (they are kinetically limited), nor even to the Landau–
Kittel relationship for domain size (they do not satisfy the assumption of infinite lateral diameter)
because they are dominated by finite aperiodic boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting atomic force microscopy images of bulk semiconducting BaTiO3 surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current- voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than that from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photothermal spectroscopy is a group of high sensitivity methods used to measure optical absorption and thermal characteristics of a sample.The basis of photothermal spectroscopy is a photo-induced change in the thermal state of the sample.Light energy absorbed and not lost by subsequent emission results in sample heating.This heating results in a temperature change as well as changes in thermodynamic parameters of the sample which are related to temperature.Measurements of the temperature,pressure,or density changes that occur due to optical absorption are ultimately the basis for the photothermal spectroscopic methods.This is a more direct measure of optical absorption than optical transmission based spectroscopies.Sample heating is a direct consequence of optical absorption and so photothermal spectroscopy signals are directly dependent on light absorption.Scattering and reflection losses do not produce photothermal signals.Subsequently,photothermal spectroscopy more accurately measures optical absorption in scattering solutions,in solids,and at interfaces.This aspect makes it particularly attractive for application to surface and solid absorption studies,and studies in scattering media.