991 resultados para feed water


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective—To determine whether Mycobacterium bovis can be transmitted from experimentally infected deer to uninfected in-contact deer. Animals—Twenty-three 6-month-old white-tailed deer. Procedure—On day 0, M bovis (2 X 108 colony-forming units) was administered by intratonsillar instillation to 8 deer; 3 control deer received saline (0.9% NaCl) solution. Eight in-contact deer were comingled with inoculated deer from day 21. On day 120, inoculated deer were euthanatized and necropsied. On day 180, 4 in-contact deer were euthanatized, and 4 new incontact deer were introduced. On day 360, all in-contact deer were euthanatized. Rectal, oral, and nasal swab specimens and samples of hay, pelleted feed, water, and feces were collected for bacteriologic culture. Tissue specimens were also collected at necropsy for bacteriologic culture and histologic analysis. Results—On day 90, inoculated and in-contact deer developed delayed-type hypersensitivity (DTH) reactions to purified protein derivative of M bovis. Similarly, new in-contact deer developed DTH reactions by 100 days of contact with original in-contact deer. Tuberculous lesions in in-contact deer were most commonly detected in lungs and tracheobronchial and medial retropharyngeal lymph nodes. Mycobacterium bovis was isolated from nasal secretions and saliva from inoculated and in-contact deer, urine and feces from in-contact deer, and hay and pelleted feed. Conclusions and Clinical Relevance—Mycobacterium bovis is efficiently transmitted from experimentally infected deer to uninfected in-contact deer through nasal secretions, saliva, or contaminated feed. Wildlife management practices that result in unnatural gatherings of deer may enhance both direct and indirect transmission of M bovis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The supercritical Rankine power cycle offers a net improvement in plant efficiency compared with a subcritical Rankine cycle. For fossil power plants the minimum supercritical steam turbine size is about 450MW. A recent study between Sandia National Laboratories and Siemens Energy, Inc., published on March 2013, confirmed the feasibility of adapting the Siemens turbine SST-900 for supercritical steam in concentrated solar power plants, with a live steam conditions 230-260 bar and output range between 140-200 MWe. In this context, this analysis is focused on integrating a line-focus solar field with a supercritical Rankine power cycle. For this purpose two heat transfer fluids were assessed: direct steam generation and molten salt Hitec XL. To isolate solar field from high pressure supercritical water power cycle, an intermediate heat exchanger was installed between linear solar collectors and balance of plant. Due to receiver selective coating temperature limitations, turbine inlet temperature was fixed 550ºC. The design-point conditions were 550ºC and 260 bar at turbine inlet, and 165 MWe Gross power output. Plant performance was assessed at design-point in the supercritical power plant (between 43-45% net plant efficiency depending on balance of plantconfiguration), and in the subcritical plant configuration (~40% net plant efficiency). Regarding the balance of plant configuration, direct reheating was adopted as the optimum solution to avoid any intermediate heat exchanger. One direct reheating stage between high pressure turbine and intermediate pressure turbine is the common practice; however, General Electric ultrasupercritical(350 bar) fossil power plants also considered doubled-reheat applications. In this study were analyzed heat balances with single-reheat, double-reheat and even three reheating stages. In all cases were adopted the proper reheating solar field configurations to limit solar collectors pressure drops. As main conclusion, it was confirmed net plant efficiency improvements in supercritical Rankine line-focus (parabolic or linear Fresnel) solar plant configurations are mainly due to the following two reasons: higher number of feed-water preheaters (up to seven)delivering hotter water at solar field inlet, and two or even three direct reheating stages (550ºC reheating temperature) in high or intermediate pressure turbines. However, the turbine manufacturer should confirm the equipment constrains regarding reheating stages and number of steam extractions to feed-water heaters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Operation of reverse osmosis (RO) in cyclic batch mode can in principle provide both high energy efficiency and high recovery. However, one factor that causes the performance to be less than ideal is longitudinal dispersion in the RO module. At the end of the batch pressurisation phase it is necessary to purge and then refill the module. During the purge and refill phases, dispersion causes undesirable mixing of concentrated brine with less concentrated feed water, therefore increasing the salt concentration and energy usage in the subsequent pressurisation phase of the cycle. In this study, we quantify the significance of dispersion through theory and experiment. We provide an analysis that relates the energy efficiency of the batch operation to the amount of dispersion. With the help of a model based on the analysis by Taylor, dispersion is quantified according to flow rate. The model is confirmed by experiments with two types of proprietary spiral wound RO modules, using sodium chloride (NaCl) solutions of concentration 1000 to 20,000 ppm. In practice the typical energy usage increases by 4% to 5.5% compared to the ideal case of zero dispersion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to identify and evaluate potential areas of technical improvement to solar-powered desalination systems that use reverse osmosis (RO). We compare ideal with real specific energy consumption (SEC) to pinpoint the causes of inefficiency. The ideal SEC is compared among different configurations including a batch system driven by a piston, and continuous systems with single or multiple stages with or without energy recovery in each case. For example, to desalinate 1 m3 of freshwater from normal seawater (osmotic pressure 27 bar) will require at least 0.94 kWh of solar energy; thus in a sunny coastal location, up to 1850 m3 of water per year per m2 (m3/m2) of land covered by solar collectors could theoretically be desalinated. For brackish water (osmotic pressure 3 bar), 11570 m3/m2 of fresh water could theoretically be obtained under the same conditions. These ideal values are compared with practically achieved values reported in the literature. The practical energy consumption is found to be typically 40-200 times higher depending on feed water composition, system configuration and energy recovery. For state-of-the-art systems, energy losses at the various steps in the conversion process are quantified and presented with the help of Sankey diagrams. Improvements that could reduce the losses are discussed. Consequently, recommendations for areas of R&D are highlighted with particular reference to emerging technologies. It is concluded that there is considerable scope to improve the efficiency of solar-powered RO system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theoretical model for the transport phenomena in an air gap membrane distillation is presented. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The slip flow occurs due to the hydrophobic properties of the membrane. The slip boundary condition applied on the feed saline solution-membrane interface is taken into consideration showing its effects on process parameters particularly permeate flow, heat transfer coefficient and thermal efficiency. The theoretical model was validated with available experimental data and was found to be in good agreement especially when the slip condition is introduced. Increasing slip length from zero to 200 μm was found to increase the permeate flux and the thermal efficiency by 33% and 1.7% respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Removal of dissolved salts and toxic chemicals in water, especially at a few parts per million (ppm) levels is one of the most difficult problems. There are several methods used for water purification. The choice of the method depends mainly on the level of feed water salinity, source of energy and type of contaminants present. Distillation is an age old method which can remove all types of dissolved impurities from contaminated water. In multiple effect distillation (MED) latent heat of steam is recycled several times to produce many units of distilled water with one unit of primary steam input. This is already being used in large capacity plants for treating sea water. But the challenge lies in designing a system for small scale operations that can treat a few cubic meters of water per day, especially suitable for rural communities where the available water is brackish. A small scale MED unit with an extendable number of effects has been designed and analyzed for optimum yield in terms of total distillate produced. © 2010 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In brackish groundwater desalination, high recovery ratio (of fresh water from saline feed) is desired to minimise concentrate reject. To this effect, previous studies have developed a batch reverse osmosis (RO) desalination system, DesaLink, which proposed to expand steam in a reciprocating piston cylinder and transmit the driving force through a linkage crank mechanism to pressurise batches of saline water (recirculating) in a water piston cylinder unto RO membranes. However, steam is largely disadvantaged at operation from low temperature (< 150oC) thermal sources; and organic working fluids are more viable, though, the obtainable thermal cycle efficiencies are generally low with low temperatures. Consequently, this thesis proposed to investigate the use of organic working fluid Rankine cycle (ORC) with isothermal expansion, to drive the DesaLink machine, at improved thermal efficiency from low temperature thermal sources. Following a review of the methods of achieving isothermal expansion, ‘liquid flooded expansion’ and ‘expansion chamber surface heating’ were identified as potential alternative methods. Preliminary experimental comparative analysis of variants of the heated expansion chamber technique of effecting isothermal expansion favoured a heated plain wall technique, and as such was adopted for further optimisation and development. Further, an optimised isothermal ORC engine was built and tested at < 95oC heat source temperature, with R245fa working fluid – which was selected from 16 working fluids that were analysed for isothermal operation. Upon satisfactory performance of the test engine, a larger (10 times) version was built and coupled to drive the DesaLink system. Operating the integrated ORC-RO DesaLink system, gave freshwater (approximately 500 ppm) production of about 12 litres per hour (from 4000 ppm feed water) at a recovery ratio of about 0.7 and specific energy consumption of 0.34 kWh/m3; and at a thermal efficiency of 7.7%. Theoretical models characterising the operation and performance of the integrated system was developed and utilised to access the potential field performance of the system, when powered by two different thermal energy sources – solar and industrial bakery waste heat – as case studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selostus: Tarhatun minkin syömään pääsyn estäminen vesialtaalla

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fluid particle breakup and coalescence are important phenomena in a number of industrial flow systems. This study deals with a gas-liquid bubbly flow in one wastewater cleaning application. Three-dimensional geometric model of a dispersion water system was created in ANSYS CFD meshing software. Then, numerical study of the system was carried out by means of unsteady simulations performed in ANSYS FLUENT CFD software. Single-phase water flow case was setup to calculate the entire flow field using the RNG k-epsilon turbulence model based on the Reynolds-averaged Navier-Stokes (RANS) equations. Bubbly flow case was based on a computational fluid dynamics - population balance model (CFD-PBM) coupled approach. Bubble breakup and coalescence were considered to determine the evolution of the bubble size distribution. Obtained results are considered as steps toward optimization of the cleaning process and will be analyzed in order to make the process more efficient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four rumen-fistulated Holstein heifers (134 +/- 1 kg initial BW) were used in a 4 x 4 Latin square design to determine the effects of delaying daily feed delivery time on intake, ruminal fermentation, behavior, and stress response. Each 3-wk experimental period was preceded by 1 wk in which all animals were fed at 0800 h. Feed bunks were cleaned at 0745 h and feed offered at 0800 h (T0, no delay), 0900 (T1), 1000 (T2), and 1100 (T3) from d1 to 21 with measurements taken during wk 1 and 3. Heifers were able to see each other at all times. Concentrate and barley straw were offered in separate compartments of the feed bunks, once daily and for ad libitum intake. Ruminal pH and saliva cortisol concentrations were measured at 0, 4, 8, and 12 h postfeeding on d 3 and 17 of each experimental period. Fecal glucocorticoid metabolites were measured on d 17. Increasing length of delay in daily feed delivery time resulted in a quadratic response in concentrate DMI (low in T1 and T2; P = 0.002), whereas straw DMI was greatest in T1 and T3 (cubic P = 0.03). Treatments affected the distribution of DMI within the day with a linear decrease observed between 0800 and 1200 h but a linear increase during nighttimes (2000 to 0800 h), whereas T1 and T2 had reduced DMI between 1200 and 1600 h (quadratic P = 0.04). Water consumption (L/d) was not affected but decreased linearly when expressed as liters per kilogram of DMI (P = 0.01). Meal length was greatest and eating rate slowest in T1 and T2 (quadratic P <= 0.001). Size of the first meal after feed delivery was reduced in T1 on d 1 (cubic P = 0.05) and decreased linearly on d 2 (P = 0.01) after change. Concentrate eating and drinking time (shortest in T1) and straw eating time (longest in T1) followed a cubic trend (P = 0.02). Time spent lying down was shortest and ruminating in standing position longest in T1 and T2. Delay of feeding time resulted in greater daily maximum salivary cortisol concentration (quadratic P = 0.04), which was greatest at 0 h in T1 and at 12 h after feeding in T2 (P < 0.05). Daily mean fecal glucocorticoid metabolites were greatest in T1 and T3 (cubic P = 0.04). Ruminal pH showed a treatment effect at wk 1 because of increased values in T1 and T3 (cubic P = 0.01). Delaying feed delivery time was not detrimental for rumen function because a stress response was triggered, which led to reduced concentrate intake, eating rate, and size of first meal, and increased straw intake. Increased salivary cortisol suggests that animal welfare is compromised.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of feed restriction on water balance and nutrient utilization was investigated in individually penned Boer x Saanen kids. Twenty-two male Boer x Saanen kids with an initial average live weight (LW) of 15 kg were used. Seven kids were slaughtered at the beginning of the experiment (reference animals) and the remainders were allocated to one of the three treatments (0, 30 and 60% restriction) and therefore there were five kids per treatment. The feed intake for the 0% restriction treatment animals determined the intake for the animals in the 30 and 60% restriction treatment. When the animals in the 0% restriction treatment group reached 25 kg LW, the animals in the 30 and 60% restriction treatment groups were also slaughtered. There was a negative relationship between DMI and water intake. The digestibility coefficients for DM, OM, carbohydrates, ash, ether extract, energy, NDF, ADF and lignin did not differ between treatments, whereas the digestibility coefficient for CP was different between treatment groups. The highest metabolic water production was in animals in the 0% restriction treatment group. No significant differences were observed in the composition of gastro-intestinal tract contents of the goats in the different treatments. Lower water retention was found in the animals in the 60% restriction treatment group. The study showed that feed restriction affected water intake, CP digestibility and water retention in the body of the kid goats. This experiment demonstrated that DM:water intake ratio changed when severe feed restriction was applied (60% restriction) and water was freely available. It shows a different pattern of behaviour of penned goats, particularly if feed intake is restricted and perhaps caution is needed to extrapolate results from nutritional and physiological trials in pens to goats at pasture. (c) 2005 Elsevier BX All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to compare the effects of 24-h road transport or 24-h feed and water deprivation on acute-phase and performance responses of feeder cattle. Angus x Hereford steers (n = 30) and heifers (n = 15) were ranked by gender and BW (217 +/- 3 kg initial BW; 185 +/- 2 d initial age) and randomly assigned to 15 pens on d -12 of the experiment (3 animals/pen; 2 steers and 1 heifer). Cattle were fed alfalfa-grass hay ad libitum and 2.3 kg/animal daily (DM basis) of a corn-based concentrate throughout the experiment (d -12 to 28). on d 0, pens were randomly assigned to 1 of 3 treatments: 1) transport for 24 h in a livestock trailer for 1,200 km (TRANS), 2) no transport but feed and water deprivation for 24 h (REST), or 3) no transport and full access to feed and water (CON). Treatments were concurrently applied from d 0 to d 1. Total DMI was evaluated daily from d -12 to d 28. Full BW was recorded before treatment application (d -1 and 0) and at the end of experiment (d 28 and 29). Blood samples were collected on d 0, 1, 4, 7, 10, 14, 21, and 28. Mean ADG was greater (P < 0.01) in CON vs. TRANS and REST cattle but similar (P = 0.46) between TRANS and REST cattle (1.27, 0.91, and 0.97 kg/d, respectively; SEM = 0.05). No treatment effects were detected for DMI (P >= 0.25), but CON had greater G: F vs. TRANS (P < 0.01) and REST cattle (P = 0.08) whereas G: F was similar (P = 0.21) between TRANS and REST cattle. Plasma cortisol concentrations were greater (P <= 0.05) in REST vs. CON and TRANS cattle on d 1, 7, 14, and 28 and also greater (P = 0.02) in TRANS vs. CON cattle on d 1. Serum NEFA concentrations were greater (P < 0.01) in REST and TRANS vs. CON cattle on d 1 and greater (P < 0.01) in REST vs. TRANS cattle on d 1. Plasma ceruloplasmin concentrations were greater (P = 0.04) in TRANS vs. CON cattle on d 1, greater (P = 0.05) in REST vs. CON on d 4, and greater (P <= 0.05) in REST vs. TRANS and CON on d 14. Plasma haptoglobin concentrations were greater (P < 0.01) in TRANS vs. CON and REST cattle on d 1 and greater (P <= 0.05) for REST vs. TRANS and CON cattle on d 7. In conclusion, 24-h transport and 24-h nutrient deprivation elicited acute-phase protein reactions and similarly reduced feedlot receiving performance of feeder cattle. These results suggest that feed and water deprivation are major contributors to the acute-phase response and reduced feedlot receiving performance detected in feeder cattle transported for long distances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We studied the effect of feed and water deprivation on gastrointestinal tract and intestinal mucosa development of chicks at 24, 48, and 72 h posthatching. The treatments were water and feed ad libitum, water ad libitum and no feed, no water but feed ad libitum, and no water and no feed. The relative weight of the yolk sac was not influenced by the treatments. However, at 48 and 72 h posthatching, the relative weight of the liver increased, and the gizzard + proventriculus weight decreased in birds receiving feed ad libitum. An increase in jejunum and ileum relative weights and lengths was observed when the birds were supplied with feed and water. The lack of water produced the same effect as the lack of feed, both causing a higher number of villi per area with reduction in villus size, when compared with feed and water ad libitum treatments. The results of this study revealed that feed and water are able to affect intestinal villus development after hatching, indicating that both feed and water must be supplied to the chicks immediately after hatching.