851 resultados para feasibility
Resumo:
Background: Exercise interventions during adjuvant cancer therapy have been shown to increase functional capacity, relieve fatigue and distress and may assist rates of chemotherapy completion. These studies have been limited to breast, gastric and mixed cancer groups and it is not yet known if a similar intervention is even feasible among women with ovarian cancer. We aimed to assess safety, feasibility and potential effect of a walking intervention in women undergoing chemotherapy for ovarian cancer. Methods: Women newly diagnosed with ovarian cancer were recruited to participate in an individualised walking intervention throughout chemotherapy and were assessed pre-and post-intervention. Feasibility measures included session adherence, compliance with exercise physiologist prescribed walking targets and self-reported program acceptability. Changes in objective physical functioning (6 minute walk test), self-reported distress (Hospital Anxiety and Depression Scale), symptoms (Memorial Symptom Assessment Scale - Physical) and quality of life (Functional Assessment of Cancer Therapy - Ovarian) were calculated, and chemotherapy completion and adverse intervention effects recorded. Results: Seventeen women were enrolled (63% recruitment rate). Mean age was 60 years (SD = 8 years), 88% were diagnosed with FIGO stage III or IV disease, 14 women underwent adjuvant and three neo-adjuvant chemotherapy. On average, women adhered to > 80% of their intervention sessions and complied with 76% of their walking targets, with the majority walking four days a week at moderate intensity for 30 minutes per session. Meaningful improvements were found in physical functioning, physical symptoms, physical well-being and ovarian cancerspecific quality of life. Most women (76%) completed ≥85% of their planned chemotherapy dose. There were no withdrawals or serious adverse events and all women reported the program as being helpful. Conclusions: These positive preliminary results suggest that this walking intervention for women receiving chemotherapy for ovarian cancer is safe, feasible and acceptable and could be used in development of future work. Trial registration: ACTRN12609000252213
Resumo:
Overcoming many of the constraints to early stage investment in biofuels production from sugarcane bagasse in Australia requires an understanding of the complex technical, economic and systemic challenges associated with the transition of established sugar industry structures from single product agri-businesses to new diversified multi-product biorefineries. While positive investment decisions in new infrastructure requires technically feasible solutions and the attainment of project economic investment thresholds, many other systemic factors will influence the investment decision. These factors include the interrelationships between feedstock availability and energy use, competing product alternatives, technology acceptance and perceptions of project uncertainty and risk. This thesis explores the feasibility of a new cellulosic ethanol industry in Australia based on the large sugarcane fibre (bagasse) resource available. The research explores industry feasibility from multiple angles including the challenges of integrating ethanol production into an established sugarcane processing system, scoping the economic drivers and key variables relating to bioethanol projects and considering the impact of emerging technologies in improving industry feasibility. The opportunities available from pilot scale technology demonstration are also addressed. Systems analysis techniques are used to explore the interrelationships between the existing sugarcane industry and the developing cellulosic biofuels industry. This analysis has resulted in the development of a conceptual framework for a bagassebased cellulosic ethanol industry in Australia and uses this framework to assess the uncertainty in key project factors and investment risk. The analysis showed that the fundamental issue affecting investment in a cellulosic ethanol industry from sugarcane in Australia is the uncertainty in the future price of ethanol and government support that reduces the risks associated with early stage investment is likely to be necessary to promote commercialisation of this novel technology. Comprehensive techno-economic models have been developed and used to assess the potential quantum of ethanol production from sugarcane in Australia, to assess the feasibility of a soda-based biorefinery at the Racecourse Sugar Mill in Mackay, Queensland and to assess the feasibility of reducing the cost of production of fermentable sugars from the in-planta expression of cellulases in sugarcane in Australia. These assessments show that ethanol from sugarcane in Australia has the potential to make a significant contribution to reducing Australia’s transportation fuel requirements from fossil fuels and that economically viable projects exist depending upon assumptions relating to product price, ethanol taxation arrangements and greenhouse gas emission reduction incentives. The conceptual design and development of a novel pilot scale cellulosic ethanol research and development facility is also reported in this thesis. The establishment of this facility enables the technical and economic feasibility of new technologies to be assessed in a multi-partner, collaborative environment. As a key outcome of this work, this study has delivered a facility that will enable novel cellulosic ethanol technologies to be assessed in a low investment risk environment, reducing the potential risks associated with early stage investment in commercial projects and hence promoting more rapid technology uptake. While the study has focussed on an exploration of the feasibility of a commercial cellulosic ethanol industry from sugarcane in Australia, many of the same key issues will be of relevance to other sugarcane industries throughout the world seeking diversification of revenue through the implementation of novel cellulosic ethanol technologies.
Resumo:
In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.
Resumo:
Background Despite its efficacy and cost-effectiveness, exercise-based cardiac rehabilitation is undertaken by less than one-third of clinically eligible cardiac patients in every country for which data is available. Reasons for non-participation include the unavailability of hospital-based rehabilitation programs, or excessive travel time and distance. For this reason, there have been calls for the development of more flexible alternatives. Methodology and Principal Findings We developed a system to enable walking-based cardiac rehabilitation in which the patient's single-lead ECG, heart rate, GPS-based speed and location are transmitted by a programmed smartphone to a secure server for real-time monitoring by a qualified exercise scientist. The feasibility of this approach was evaluated in 134 remotely-monitored exercise assessment and exercise sessions in cardiac patients unable to undertake hospital-based rehabilitation. Completion rates, rates of technical problems, detection of ECG changes, pre- and post-intervention six minute walk test (6 MWT), cardiac depression and Quality of Life (QOL) were key measures. The system was rated as easy and quick to use. It allowed participants to complete six weeks of exercise-based rehabilitation near their homes, worksites, or when travelling. The majority of sessions were completed without any technical problems, although periodic signal loss in areas of poor coverage was an occasional limitation. Several exercise and post-exercise ECG changes were detected. Participants showed improvements comparable to those reported for hospital-based programs, walking significantly further on the post-intervention 6 MWT, 637 m (95% CI: 565–726), than on the pre-test, 524 m (95% CI: 420–655), and reporting significantly reduced levels of cardiac depression and significantly improved physical health-related QOL. Conclusions and Significance The system provided a feasible and very flexible alternative form of supervised cardiac rehabilitation for those unable to access hospital-based programs, with the potential to address a well-recognised deficiency in health care provision in many countries. Future research should assess its longer-term efficacy, cost-effectiveness and safety in larger samples representing the spectrum of cardiac morbidity and severity.
Resumo:
Background Coronary heart disease (CHD) and depression are leading causes of disease burden globally and the two often co-exist. Depression is common after Myocardial Infarction (MI) and it has been estimated that 15-35% of patients experience depressive symptoms. Co-morbid depression can impair health related quality of life (HRQOL), decrease medication adherence and appropriate utilisation of health services, lead to increased morbidity and suicide risk, and is associated with poorer CHD risk factor profiles and reduced survival. We aim to determine the feasibility of conducting a randomised, multi-centre trial designed to compare a tele-health program (MoodCare) for depression and CHD secondary prevention, with Usual Care (UC). Methods Over 1600 patients admitted after index admission for Acute Coronary Syndrome (ACS) are being screened for depression at six metropolitan hospitals in the Australian states of Victoria and Queensland. Consenting participants are then contacted at two weeks post-discharge for baseline assessment. One hundred eligible participants are to be randomised to an intervention or a usual medical care control group (50 per group). The intervention consists of up to 10 × 30-40 minute structured telephone sessions, delivered by registered psychologists, commencing within two weeks of baseline screening. The intervention focuses on depression management, lifestyle factors (physical activity, healthy eating, smoking cessation, alcohol intake), medication adherence and managing co-morbidities. Data collection occurs at baseline (Time 1), 6 months (post-intervention) (Time 2), 12 months (Time 3) and 24 months follow-up for longer term effects (Time 4). We are comparing depression (Cardiac Depression Scale [CDS]) and HRQOL (Short Form-12 [SF-12]) scores between treatment and UC groups, assessing the feasibility of the program through patient acceptability and exploring long term maintenance effects. A cost-effectiveness analysis of the costs and outcomes for patients in the intervention and control groups is being conducted from the perspective of health care costs to the government. Discussion This manuscript presents the protocol for a randomised, multi-centre trial to evaluate the feasibility of a tele-based depression management and CHD secondary prevention program for ACS patients. The results of this trial will provide valuable new information about potential psychological and wellbeing benefits, cost-effectiveness and acceptability of an innovative tele-based depression management and secondary prevention program for CHD patients experiencing depression.
Resumo:
Objectives: Malnutrition is common in older hospitalised patients, and barriers to adequate intake in hospital limit the effectiveness of hospital-based nutrition interventions. This pilot study was undertaken to determine whether nutrition-focussed care at discharge and in the early post-hospital period is feasible and acceptable to patients and carers, and improves nutritional status. Design: Prospective cohort study Setting: Internal medicine wards of a tertiary teaching hospital in Brisbane, Australia Participants: Patients aged 65 and older admitted for at least 3 days, identified as malnourished or at risk of malnutrition using Mini Nutritional Assessment (MNA). Interventions: An interdisciplinary discharge team (specialist discharge planning nurse and accredited practicing dietitian) provided nutrition-focussed education, advice, service coordination and follow-up (home visits and telephone) for 6 weeks following hospitalisation Measurements: Nutritional intake, weight, functional status and MNA were recorded 6 and 12 weeks after discharge. Service intensity and changes to care were noted, and hospital readmissions recorded. Service feedback from patients and carers was sought using a brief questionnaire. Results: 12 participants were enrolled during the 6 week pilot (mean age 82 years, 50% male). All received 1-2 home visits, and 3-8 telephone calls. Four participants had new community services arranged, 4 were commenced on oral nutritional supplements, and 7 were referred to community dietetics services for follow-up. Two participants had a decline in MNA score of more than 10% at 12 week follow-up, while the remainder improved by at least 10%. Individualised care including community service coordination was valued by participants. Conclusion: The proposed model of care for older adults was feasible, acceptable to patients and carers, and associated with improved nutritional status at 12 weeks for most participants. The pilot data will be useful for design of intervention trials.
Resumo:
Australia requires decisive action on climate change and issues of sustainability. The Urban Informatics Research Lab has been funded by the Queensland State Government to conduct a three year study (2009 – 2011) exploring ways to support Queensland residents in making more sustainable consumer and lifestyle choices. We conduct user-centred design research that inform the development of real-time, mobile, locational, networked information interfaces, feedback mechanisms and persuasive and motivational approaches that in turn assist in-situ decision making and environmental awareness in everyday settings. The study aims to deliver usable and useful prototypes offering individual and collective visualisations of ecological impact and opportunities for engagement and collaboration in order to foster a participatory and sustainable culture of life in Australia. Raising people’s awareness with environmental data and educational information does not necessarily trigger sufficient motivation to change their habits towards a more environmentally friendly and sustainable lifestyle. Our research seeks to develop a better understanding how to go beyond just informing and into motivating and encouraging action and change. Drawing on participatory culture, ubiquitous computing, and real-time information, the study delivers research that leads to viable new design approaches and information interfaces which will strengthen Australia’s position to meet the targets of the Clean Energy Future strategy, and contribute to the sustainability of a low-carbon future in Australia. As part of this program of research, the Urban Informatics Research Lab has been invited to partner with GV Community Energy Pty Ltd on a project funded by the Victorian Government Sustainability Fund. This feasibility report specifically looks at the challenges and opportunities of energy monitoring in households in Victoria that include a PV solar installation. The report is structured into two parts: In Part 1, we first review a range of energy monitoring solutions, both stand-alone and internet-enabled. This section primarily focusses on the technical capacilities. However, in order to understand this information and make an informed decision, it is crucial to understand the basic principles and limitations of energy monitoring as well as the opportunities and challenges of a networked approach towards energy monitoring which are discussed in Section 2.
Resumo:
This study aimed to assess the feasibility of a home-based exercise program and examine the effects on the healing rates of venous leg ulcers. A 12 –week randomised controlled trial was conducted investigating the effects of an exercise intervention compared to a usual care group. Participants in both groups (n = 13) had active venous ulceration and were treated in a metropolitan hospital outpatients clinic in Australia. Data were collected on recruitment from medical records, clinical assessment and questionnaires. Follow-up data on progress in healing and treatments were collected fortnightly for 12 weeks. Calf muscle pump function data were collected at baseline and 12 weeks from recruitment. Range of ankle motion data were collected at baseline, 6 and 12 weeks from recruitment. This pilot study indicated that the intervention was feasible. Clinical significance was observed in the intervention group with a 32% greater decrease in ulcer size (p=0.34) than the control group, and a 10% (p=0.74) improvement in the number of participants healed in the intervention group compared to the control group. Significant differences between groups over time were observed in calf muscle pump function parameters; (ejection fraction [p = 0.05]; residual volume fraction [p = 0.04]) and range of ankle motion (p = 0.01). This pilot study is one of the first studies to examine and measure clinical healing rates for participants involved in a home-based progressive resistance exercise program. Further research is warranted with a larger multi-site study.
Resumo:
In this submission, we provide evidence for our view that copyright policy in the UK must encourage new digital business models which meet the changing needs of consumers and foster innovation in the UK both within, and beyond, the creative industries. We illustrate our arguments using evidence from the music industry. However, we believe that our key points on the relationship between the copyright system and innovative digital business models apply across the UK creative industries.
Resumo:
Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.
Resumo:
Background: Evidence demonstrates self-management programs are an effective approach to assist patients with chronic diseases such as type 2 diabetes or cardiac conditions to modify their lifestyle for better managing their conditions. Using information technology (IT) has great potential to support self-management programs and assist patients to fulfill their goals in managing their conditions more efficiently and effectively. Examples of different types of technology used in self-management programs that have limited research support include: text messages, telephone followup, web-based programs, and other internet-assisted education. But little is known about the applicability and feasiability of different forms of technology for patients with chronic diseases such as those with type 2 diabetes and critical cardiac conditions. Furthermore, although there is some evidence of the benefits of using IT in supporting self-management programs, further research on the use of IT in such programs is recommended. Objective: To develop and pilot test an integrated Cardiac- Diabetes Self-Management Program (CDSMP) incorporating telephone and text-message follow-up. Methods: A pilot study using randomised controlled trial is conducted in the coronary care unit (CCU) in a Brisbane metropolitan hospital in Australia to collect data on patients with type 2 diabetes admitted to CCU. The main outcomes included self-efficacy levels, knowledge, and quality of life. Results: Initial results reveal that patients with diabetes admitted to the CCU in the experimental group did improve their self-efficacy, and knowledge levels. Acknowledgements: This Project is funded by QUT Early Career Researcher Research Grant
Resumo:
Grading osteoarthritic tissue has, until now, been a laboratory process confined to research activities. This thesis establishes a scientific protocol that extends osteoarthritic tissue ranking to surgical practice. The innovative protocol, which now incorporates the structural degeneration of collagen, enhances the traditional Modified Mankin ranking system, enabling its application to real time decision during surgery. Because it is fast and without time consuming laboratory process, it would potentially enable the cataloguing of tissues in osteoarthritic joints in all compartments of diseased joints during surgery for epistemological study and insight into the manifestation of osteoarthritis across age, gender, occupation, physical activities and race.