771 resultados para fatty acid selectivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Fatty acids are abundant in vegetable oils. They are known to have antibacterial and antifungal properties. METHODS: Antifungal susceptibility was evaluated by broth microdilution assay following CLSI (formerly the NCCLS) guidelines against 16 fungal strains of clinical interest. RESULTS: In this work, fatty acid methyl esters (FAME) was able to inhibit 12 clinical strains of the pathogenic fungus Paracoccidioides brasiliensis and were also active in the bioautographic assay against Cladosporium sphaerospermum. CONCLUSIONS: FAME was a more potent antifungal than trimethoprim-sulfamethoxazole against P. brasiliensis under the experimental conditions tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências - Especialidade em Biologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Several studies have demonstrated clinical benefits of fish consumption for the cardiovascular system. These effects are attributed to the increased amounts of polyunsaturated fatty acids in these foods. However, the concentrations of fatty acids may vary according to region. Objective: The goal of this study was to determine the amount of,cholesterol and fatty acids in 10 Brazilian fishes and in a non-native farmed salmon usually consumed in Brazil. Methods: The concentrations of cholesterol and fatty acids, especially omega-3, were determined in grilled fishes. Each fish sample was divided in 3 sub-samples (chops) and each one was extracted from the fish to minimize possible differences in muscle and fat contents. Results: The largest cholesterol amount was found in white grouper (107.6 mg/100 g of fish) and the smallest in badejo (70 mg/100 g). Omega-3 amount varied from 0.01 g/100 g in badejo to 0.900 g/100 g in weakfish. Saturated fat varied from 0.687 g/100 g in seabass to 4.530 g/100 g in filhote. The salmon had the greatest concentration of polyunsaturated fats (3.29 g/100 g) and the highest content of monounsaturated was found in pescadinha (5.98 g/100 g). Whiting and boyfriend had the best omega-6/omega 3 ratios respectively 2.22 and 1.19, however these species showed very little amounts of omega-3. Conclusion: All studied Brazilian fishes and imported salmon have low amounts of saturated fat and most of them also have low amounts of omega-3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Diabetic myocardium is particularly vulnerable to develop heart failure in response to chronic stress conditions including hypertension or myocardial infarction. We have recently observed that angiotensin II (Ang II)-mediated downregulation of the fatty acid oxidation pathway favors occurrence of heart failure by myocardial accumulation of lipids (lipotoxicity). Because diabetic heart is exposed to high levels of circulating fatty acid, we determined whether insulin resistance favors development of heart failure in mice with Ang II-mediated myocardial remodeling.Methods: To study the combined effect of diabetes and Ang II-induced heart remodeling, we generated leptin-deficient/insulin resistant (Lepob/ob) mice with cardiac targeted overexpression of angiotensinogen (TGAOGN). Left ventricular (LV) failure was indicated by pulmonary congestion (lung weight/tibial length>+2SD of wild-type mice). Myocardial metabolism and function were assessed during in vitro isolated working heart perfusion.Results: Forty-eight percent of TGAOGN mice without insulin resistance exhibited pulmonary congestion at the age of 6 months associated with increased myocardial BNP expression (+375% compared with WT) and reduced LV power (developed pressure x cardiac output; -15%). The proportion of mice presenting heart failure was markedly increased to 71% in TGAOGN mice with insulin resistance (TGAOGN/Lepob/ob). TGAOGN/Lepob/ob mice with heart failure exhibited further increase of BNP compared with failing non-diabetic TGAOGN mice (+146%) and further reduction of cardiac power (-59%). Mice with insulin resistance alone (Lepob/ob) did not exhibit signs of heart failure or LV dysfunction. Myocardial fatty acid oxidation measured during in vitro perfusion was markedly increased in non-failing hearts from Lepob/ob mice (+380% compared with WT) and glucose oxidation decreased (-72%). In contrast, fatty acid and glucose oxidation did not differ from Lepob/ob mice in hearts from TGAOGN/Lepob/ob mice without heart failure. However, both fatty acid and glucose oxidation were markedly decreased (-47% and -48%, respectively, compared with WT/Lepob/+) in failing hearts from TGAOGN/Lepob/ob mice. Reduction of fatty acid oxidation was associated with marked reduction of protein expression of a number of regulatory enzymes implied in fatty acid oxidation.Conclusions: Insulin resistance favors the progression to heart failure during chronic exposure of the myocardium to Ang II. Our results are compatible with a role of Ang II-mediated downregulation of fatty acid oxidation, potentially promoting lipotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many organisms use fatty acid derivatives as biological regulators. In plants, for example, fatty acid-derived signals have established roles in the regulation of developmental and defense gene expression. Growing numbers of these compounds, mostly derived from fatty acid hydroperoxides, are being characterized. The model plant Arabidopsis thaliana is serving a vital role in the discovery of fatty acid-derived signal molecules and the genetic analysis of their synthesis and action. The Arabidopsis genome sequencing project, the availability of large numbers of mutants in fatty acid biosynthesis and signal transduction, as well as excellent pathosystems, make this plant a tremendously useful model for research in fatty acid signaling. This review summarizes recent progress in understanding fatty acid signaling in A. thaliana and highlights areas of research where progress is rapid. Particular attention is paid to the growing literature on the jasmonate family of regulators and their role in defense against insects and microbial pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vaccines in schistosomiasis using homologous antigens have been studied extensively in experimentally infected mammalian hosts. Vaccines using heterologous antigens have received comparatively less attention. This review summarizes recent work on a heterologous 12 kDa Fasciola hepatica antigenic polypeptide which cross reacts with Schistosoma mansoni. A cDNA has been cloned and sequenced, and the predicted amino acid sequence of the recombinant protein has been shown to have significant (44) identity with a 14 kDa S. mansoni fatty acid binding protein. Thus in the parasitic trematodes fatty acid binding proteins may be potential vaccine candidates. The F. hepatica recombinant protein has been overexpressed and purified and denoted rFh15. Preliminary rFh15 migrates more slowly (i.e. may be slightly larger) than nFh12 on SDS-PAGE and has a predicted pI of 6.01 vs. observed pI of 5.45. Mice infected with F. hepatica develop antibodies to nFh12 by 2 weeks of infection vs. 6 weeks of infection to rFh15; on the other hand, mice with schistosomiasis mansoni develop antibodies to both nFh12 and rFh15 by 6 weeks of infection. Both the F. hepatica and S. mansoni cross-reactive antigens may be cross-protective antigens with the protection inducing capability against both species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Increasing evidence suggests that left ventricular remodeling is associated with a shift from fatty acid to glucose metabolism for energy production. The aim of this study was to determine whether left ventricular remodeling with and without late-onset heart failure after myocardial infarction is associated with regional changes in the expression of regulatory proteins of glucose or fatty acid metabolism. METHODS: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary artery (LAD). In infarcted and sham-operated hearts the peri-infarction region (5-mm zone surrounding the region at risk), the interventricular septum and the right ventricular free wall were separated for analysis. RESULTS: At 8 and 20 weeks after LAD ligation, the peri-infarction region and the septum exhibited marked re-expression of atrial natriuretic factor [+252+/-37 and +1093+/-279%, respectively, in the septum (P<0.05)] and of alpha-smooth muscle actin [+34+/-10 and +43+/-14%, respectively, in the septum (P<0.05)]. At 8 weeks, when left ventricular hypertrophy was present without signs of heart failure, myocardial mRNA expression of glucose transporters (GLUT-1 and GLUT-4) was not altered, whereas mRNA expression of medium-chain acyl-CoA dehydrogenase (MCAD) was significantly reduced in the peri-infarction region (-25+/-7%; P<0.05). In hearts exhibiting heart failure 20 weeks after infarct-induction there was a change in all three ventricular regions of both mRNA and protein content of GLUT-1 [+72+/-28 and +121+/-15%, respectively, in the peri-infarction region (P<0.05)] and MCAD [-29+/-9 and -56+/-4%, respectively, in the peri-infarction region (P<0.05)]. CONCLUSION: In rats with large myocardial infarction, progression from compensated remodeling to overt heart failure is associated with upregulation of GLUT-1 and downregulation of MCAD in both the peri-infarction region and the septum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AIMS: Marked changes in metabolism, including liver steatosis and hypoglycemia, occur after partial hepatectomy. Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a nuclear hormone receptor that is activated by fatty acids and involved in hepatic fatty acid metabolism and regeneration. Liver fatty acid binding protein (LFABP) is an abundant protein in liver cytosol whose expression is regulated by PPAR alpha. It is involved in fatty acid uptake and diffusion and in PPAR alpha signaling. The aim of this study was to investigate the expression of PPAR alpha and LFABP during liver regeneration. METHODS: Male Sprague-Dawley rats and male C57 Bl/6 mice were subjected to 2/3 hepatectomy and LFABP and PPAR alpha mRNA and protein levels were measured at different time points after surgery. The effect of partial hepatectomy was followed during 48 h in rats and 72 h in mice. RESULTS: PPAR alpha mRNA and protein levels were decreased 26 h after hepatectomy of rats. The LFABP mRNA and protein levels paralleled those of PPAR alpha and were also decreased 26 h after hepatectomy. In mice, the mRNA level was decreased after 36 and 72 h after hepatectomy. In this case, LFABP mRNA levels decreased more slowly after partial hepatectomy than in rats. CONCLUSIONS: A marked decrease in PPAR alpha expression may be important for changed gene expression, e.g. LFABP, and metabolic changes, such as hypoglycemia, during liver regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.