950 resultados para farm irrigation water productivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supersedes the booklet "Measurement of Irrigation Water."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliographical references: p. 389-399.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caption title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caption title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resource potential of shallow water tables for cropping systems has been investigated using the Australian sugar industry as a case study. Literature concerning shallow water table contributions to sugarcane crops has been summarised, and an assessment of required irrigation for water tables to depths of 2 m investigated using the SWIMv2.1 soil water balance model for three different soils. The study was undertaken because water availability is a major limitation for sugarcane and other crop production systems in Australia and knowledge on how best to incorporate upflow from water tables in irrigation scheduling is limited. Our results showed that for the three soils studied (representing a range of permeabilities as defined by near-saturated hydraulic conductivities), no irrigation would be required for static water tables within 1 m of the soil surface. Irrigation requirements when static water tables exceeded 1 m depth were dependent on the soil type and rooting characteristics (root depth and density). Our results also show that the near-saturated hydraulic conductivities are a better indicator of the ability of water tables below 1 m to supply sufficient upflow as opposed to soil textural classifications. We conclude that there is potential for reductions in irrigation and hence improvements in irrigation water use efficiency in areas where shallow water tables are a low salinity risk: either fresh, or the local hydrology results in net recharge. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: Climate change has a potential to impact rainfall, temperature and air humidity, which have relation to plant evapotranspiration and crop water requirement. The purpose of this research is to assess climate change impacts on irrigation water demand, based on future scenarios derived from the PRECIS (Providing Regional Climates for Impacts Studies), using boundary conditions of the HadCM3 submitted to a dynamic downscaling nested to the Hadley Centre regional circulation model HadRM3P. Monthly time series for average temperature and rainfall were generated for 1961-90 (baseline) and the future (2040). The reference evapotranspiration was estimated using monthly average temperature. Projected climate change impact on irrigation water demand demonstrated to be a result of evapotranspiration and rainfall trend. Impacts were mapped over the target region by using geostatistical methods. An increase of the average crop water needs was estimated to be 18.7% and 22.2% higher for 2040 A2 and B2 scenarios, respectively. Objective ? To analyze the climate change impacts on irrigation water requirements, using downscaling techniques of a climate change model, at the river basin scale. Method: The study area was delimited between 4º39?30? and 5º40?00? South and 37º35?30? and 38º27?00? West. The crop pattern in the target area was characterized, regarding type of irrigated crops, respective areas and cropping schedules, as well as the area and type of irrigation systems adopted. The PRECIS (Providing Regional Climates for Impacts Studies) system (Jones et al., 2004) was used for generating climate predictions for the target area, using the boundary conditions of the Hadley Centre model HadCM3 (Johns et al., 2003). The considered time scale of interest for climate change impacts evaluation was the year of 2040, representing the period of 2025 to 2055. The output data from the climate model was interpolated, considering latitude/longitude, by applying ordinary kriging tools available at a Geographic Information System, in order to produce thematic maps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El agua de riego en España se ha reducido del 80 % al 70% tras la rehabilitación de los sistemas tradicionales de riego y el incremento de riegos a presión. La política española ha favorecido la creación de nuevos regadíos con fines sociales, para asentar a la población rural en zonas con disponibilidad de recursos hídricos. Este contexto es aplicable a la Comunidad de Regantes “Rio Adaja” (CCRR), que comenzó a funcionar en 2010 por lo que se la ha elegido para evaluar el uso y productividad del agua y manejo del riego en CCRR modernizadas de la cuenca del Duero. El estudio del manejo del riego se realizó con evaluaciones de campo, el primer año de funcionamiento, en una muestra de sistemas de riego (pivotes centrales, ramales de avance frontal, cobertura total) representativa de los sistemas predominantes en la CCRR. Además, se analizó la carta de riego propuesta por el fabricante de los pivotes centrales, considerando una distribución de caudal continua a lo largo del ramal, y se propuso una nueva carta con emisores de riego que mejoraban la uniformidad de aplicación del agua. El uso del agua en la CCRR se evaluó considerando tanto los indicadores de eficiencia del riego: suministro relativo de riego (anual relative irrigation supply, ARIS), suministro relativo del agua (anual relativewater supply, ARWS), suministro relativo de precipitación (rainfall relative supply, RRS) como los de productividad: productividad del agua (water productivity, WP) productividad del agua de riego (irrigation water productivity, IWP) y productividad de la evapotranspiración (evapotranspiration water productivity, ETWP). Primero, se determinaron: las necesidades hídricas de los cultivos para mantener un contenido de humedad óptimo en su zona radical, el coeficiente dual del cultivo, el agua disponible total (ADP) y agua fácilmente aprovechable (AFA). Después, se estimaron las necesidades hídricas de los cultivos considerando tres años tipo: húmedo, normal y seco correspondientes a la probabilidad de disponibilidad de la precipitación del 20, 50 y 80%, respectivamente. Así mismo, se realizó una encuesta a los regantes de la CCRR para conocer la dosis de riego y rendimiento anual de los cultivos principales durante sus tres años de funcionamiento: 2010-2011, 2011-2012 y 2012-2013.Finalmente, se simuló el efecto del riego y su manejo en la producción de los cultivos y en la productividad del agua. Además, el modelo de simulación AQUACROP (Geerts et al., 2010) se ha utilizado para estudiar la mejora del uso del agua de los cultivos de la CCRR. Dado que este modelo requiere de calibración específica para cada cultivo y cada zona y dado que, de todos los cultivos de la CCRR, sólo el girasol cumplía el requisito, este cultivo fue elegido para estudiar si la estrategia de riego deficitario mejoraría el uso del agua. Los resultados obtenidos indican que el 90% de los sistemas de riego evaluados distribuye el agua con una uniformidad adecuada (CUC≥75%). La simulación de la distribución del agua con las cartas de riego propuestas por el fabricante en pivotes centrales resultó en coeficientes CUC< 75% y sus valores mejoraban al eliminar el aspersor distal. La uniformidad del riego mejoraría si se trabajase con la carta de riego propuesta y que se compone por emisores de riego seleccionados en este estudio. En la mayoría de los cultivos, se aplicó riegos deficitarios (ARIS < 1 en los dos primeros años de funcionamiento de la CCRR y riegos excedentarios (ARIS > 1) el tercer año siendo significativas las diferencias observadas. El manejo del riego fue bueno (0,9 ≤ ARWS ≤1,2) en la mayoría de los cultivos. Así mismo, los indicadores de productividad del agua (WP e IWP (€.m-3)) varió entre cultivos y años estudiados y, destacan los valores observados en: cebolla, patata, zanahoria y cebada. En general, la productividad del agua en los riegos deficitarios fue mayor observándose además, que los índices de productividad mayores correspondieron al año con precipitación mayor aunque, las diferencias entre sus valores medios no fueron significativas en las tres campañas de riego estudiadas. Los resultados apuntan a que la metodología del balance hídrico y las herramientas presentadas en este trabajo (uniformidad de distribución de agua, indicadores de eficiencia del uso de agua y de su productividad) son adecuadas para estudiar el manejo del agua en CCRR. En concreto, la uniformidad en la aplicación del agua de la CCRR mejoraría seleccionando emisores de riego que proporcionen una mayor uniformidad de distribución del agua, lo que conllevaría a cambiar el diámetro de la boquilla de los emisores y/o eliminar el aspersor distal. Así mismo, puede ser de interés adoptar estrategias de riego deficitario para incrementar la productividad en el uso del agua, y las rentas de los regantes, para lo cual se propone utilizar un patrón de cultivos de referencia. Finalmente, el riego deficitario puede ser una estrategia para mejorar la eficiencia y productividad en el uso del agua de la CCRR siempre que lleve asociado un manejo del riego adecuado que resulta, relativamente, más fácil cuando se dispone de sistemas de riego con una uniformidad de aplicación alta. Sin embargo su aplicación no sería aconsejable en los cultivos de remolacha azucarera, regado con sistemas de riego con un coeficiente de uniformidad de Christiansen CUC < 75%, y maíz, regado con sistemas de riego con un coeficiente de uniformidad de Christiansen CUC < 65%. ABSTRACT The irrigation scheme modernization and the increase of sprinkler irrigation area have reduced the irrigation water use from 80 to 70%. The national irrigation policy favored the creation of new irrigation schemes with the purpose to settle the rural population in areas with availability in water resources. Within this context, the irrigation district “Río Adaja” (CCRR) started in 2010 so, it has been chosen as a case study to evaluate the water use and the irrigation management in a modernized CCRR. Several field evaluations were carried out during the first operation year, in a sample of irrigation systems (center pivot, moving lateral and solid set) selected among all the systems in the CCRR. Likewise, the manufacturer irrigation chart for the center pivot systems has been considered and the pressure and discharge distribution along the pivot have been estimated, assuming a continuous flow along the pipe. Then; the sprinkler nozzles were selected order to increase the uniformity on water application. The water use in the CCRR has been assessed by considering the water use efficiency indicators: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS) and also the productivity indicators: water productivity (WP), irrigation water productivity (IWP) and evapotranspiration water productivity (ETWP). On the one hand, it has been determined the crop water requirement (to maintain the optimal soil water content in the rooting zone), the dual crop coefficient, the total available water and the readily available water. The crop water requirement was estimated by considering the typical wet, normal and dry years which correspond to the probability of effective precipitation exceedance of 20, 50 and 80%, respectively. On the other hand, the irrigation depth and crop yield by irrigation campaign have been considered for the main crops in the area. This information was obtained from a farmer’s survey in 2010-2011, 2011-2012 and 2012-2013. For sunflower, the irrigation effect and its management on the crop yield and water productivity have been simulated. Also a deficit irrigation strategy, which improves the water resources, has been determined by means of AQUACROP (FAO). The results showed that 90% of the evaluated irrigation systems have adequate irrigation water application uniformity (CUC ≥ 75%). The CUC values in center pivots, which were calculated using the manufacturer irrigation chart, are below < 75% . However, these values would increase with the change of emitter nozzle to the proposed nozzles selection. The results on water use showed a deficit irrigation management (ARIS < 1), in most of crops during the first two operation years, and an excess in irrigation for the third year (ARIS > 1) although non-significant difference was observed. In most cases, the management of irrigation is adequate (0,9≤ ARWS≤ 1,2) although there are differences among crops. Likewise, the productivity indicators (WP and IWP (€.m-3)) varied among crops and with irrigation events. The highest values corresponded to onion, potato, carrot and barley. The values for deficit irrigation were the highest and the productivity indicators increased the year with the highest effective precipitation. Nevertheless, the differences between the average values of these indicators by irrigation campaign were non-significant. This study highlights that the soil water balance methodology and other tools used in the methodology are adequate to study the use and productivity of water in the irrigation district. In fact, the water use in this CCRR can be improved if the irrigation systems were designed with higher water distribution uniformity what would require the change of sprinkler nozzles and/or eliminate the end gun. Likewise, it is advisable to set up deficit irrigation strategies to increase the water productivity taking into account certain limits on water application uniformities. In this respect, a reference cropping pattern has been proposed and the limits for water uniformity have been calculated for several crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate projections indicate that rising temperatures will affect summer crops in the southern Iberian Peninsula. The aim of this study was to obtain projections of the impacts of rising temperatures, and of higher frequency of extreme events on irrigated maize, and to evaluate some adaptation strategies. The study was conducted at several locations in Andalusia using the CERES-Maize crop model, previously calibrated/validated with local experimental datasets. The simulated climate consisted of projections from regional climate models from the ENSEMBLES project; these were corrected for daily temperature and precipitation with regard to the E-OBS observational dataset. These bias-corrected projections were used with the CERES-Maize model to generate future impacts. Crop model results showed a decrease in maize yield by the end of the 21st century from 6 to 20%, a decrease of up to 25% in irrigation water requirements, and an increase in irrigation water productivity of up to 22%, due to earlier maturity dates and stomatal closure caused by CO2 increase. When adaptation strategies combining earlier sowing dates and cultivar changes were considered, impacts were compensated, and maize yield increased up to 14%, compared with the baseline period (1981-2010), with similar reductions in crop irrigation water requirements. Effects of extreme maximum temperatures rose to 40% at the end of the 21st century, compared with the baseline. Adaptation resulted in an overall reduction in extreme Tmax damages in all locations, with the exception of Granada, where losses were limited to 8%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reclaimed water provides an important contribution to the water balance in water-scarce Jordan, but the quality of this water presents both benefits and challenges. Careful management of reclaimed water is required to maximize the nutrient benefits while minimizing the salinity risks. This work uses a multi-disciplinary research approach to show that soil response to irrigation with reclaimed water is a function of the management strategies adopted on the farm by the water user. The adoption of management methods to maintain soil productivity can be seen to be a result of farmers’ awareness to potentially plant-toxic ions in the irrigation water (70% of Jordan Valley farmers identified salinization as a hazard from irrigation with reclaimed water). However, the work also suggests that farmers’ management capacity is affected by the institutional management of water. About a third (35%) of farmers in the Jordan Valley claimed that their ability to manage salinization was limited by water shortages. Organizational interviews revealed that institutional awareness of soil management challenges was quite high (34% of interviewees described salinization as a risk from water reuse), but strategies to address this challenge at the institutional level require greater development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improvements in on-farm water and soil fertility management through water harvesting may prove key to up-grade smallholder farming systems in dry sub-humid and semi-arid sub-Sahara Africa (SSA). The currently experienced yield levels are usually less than 1 t ha-1, i.e., 3-5 times lower than potential levels obtained by commercial farmers and researchers for similar agro-hydrological conditions. The low yield levels are ascribed to the poor crop water availability due to variable rainfall, losses in on-farm water balance and inherently low soil nutrient levels. To meet an increased food demand with less use of water and land in the region, requires farming systems that provide more yields per water unit and/or land area in the future. This thesis presents the results of a project on water harvesting system aiming to upgrade currently practised water management for maize (Zea mays, L.) in semi-arid SSA. The objectives were to a) quantify dry spell occurrence and potential impact in currently practised small-holder grain production systems, b) test agro-hydrological viability and compare maize yields in an on-farm experiment using combinations supplemental irrigation (SI) and fertilizers for maize, and c) estimate long-term changes in water balance and grain yields of a system with SI compared to farmers currently practised in-situ water harvesting. Water balance changes and crop growth were simulated in a 20-year perspective with models MAIZE1&2. Dry spell analyses showed that potentially yield-limiting dry spells occur at least 75% of seasons for 2 locations in semi-arid East Africa during a 20-year period. Dry spell occurrence was more frequent for crop cultivated on soil with low water-holding capacity than on high water-holding capacity. The analysis indicated large on-farm water losses as deep percolation and run-off during seasons despite seasonal crop water deficits. An on-farm experiment was set up during 1998-2001 in Machakos district, semi-arid Kenya. Surface run-off was collected and stored in a 300m3 earth dam. Gravity-fed supplemental irrigation was carried out to a maize field downstream of the dam. Combinations of no irrigation (NI), SI and 3 levels of N fertilizers (0, 30, 80 kg N ha-1) were applied. Over 5 seasons with rainfall ranging from 200 to 550 mm, the crop with SI and low nitrogen fertilizer gave 40% higher yields (**) than the farmers’ conventional in-situ water harvesting system. Adding only SI or only low nitrogen did not result in significantly different yields. Accounting for actual ability of a storage system and SI to mitigate dry spells, it was estimated that a farmer would make economic returns (after deduction of household consumption) between year 2-7 after investment in dam construction depending on dam sealant and labour cost used. Simulating maize growth and site water balance in a system of maize with SI increased annual grain yield with 35 % as a result of timely applications of SI. Field water balance changes in actual evapotranspiration (ETa) and deep percolation were insignificant with SI, although the absolute amount of ETa increased with 30 mm y-1 for crop with SI compared to NI. The dam water balance showed 30% productive outtake as SI of harvested water. Large losses due to seepage and spill-flow occurred from the dam. Water productivity (WP, of ETa) for maize with SI was on average 1 796 m3 per ton grain, and for maize without SI 2 254 m3 per ton grain, i.e, a decerase of WP with 25%. The water harvesting system for supplemental irrigation of maize was shown to be both biophysically and economically viable. However, adoption by farmers will depend on other factors, including investment capacity, know-how and legislative possibilities. Viability of increased water harvesting implementation in a catchment scale needs to be assessed so that other down-stream uses of water remains uncompromised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing water scarcity and depleted water productivity in irrigated soils are inducing farmers to adopt improved varieties, such as those with high-capacity tolerance. The use of tolerant varieties of sugarcane might substantially avoid the decline of productivity under water deficit. This research aimed to evaluate the harmful effects of drought on the physiology of two sugarcane varieties (RB867515 and RB962962) during the initial development. Young plants were subjected to irrigation suspension until total stomata closure, and then rewatered. Significant reduction on stomatal conductance, transpiration, and net photosynthesis were observed. RB867515 showed a faster stomatal closure while RB962962 slowed the effects of drought on the gas exchanges parameters with a faster recovering after rewatering. Accumulation of carbohydrates, amino acids, proline, and protein in the leaves and roots of the stressed plants occurred in both varieties, substantially linked to reduction of the leaf water potential. Due to the severity of stress, this accumulation was not enough to maintain the cell turgor pressure, so relative water content was diminished. Water stress affected the contents of chlorophyll (a, b, and total) in both varieties, but not the levels of carotenoids. There was a significant reduction in dry matter under stress. In conclusion, RB962962 variety endured stressed conditions more than RB867515, since it slowed down the damaging effects of drought on the gas exchanges. In addition, RB962962 presented a faster recovery than RB867515, a feature that qualifies it as a variety capable of enduring short periods of drought without major losses in the initial stage of its development.