884 resultados para fact extraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing resolution of remote sensing images, road network can be displayed as continuous and homogeneity regions with a certain width rather than traditional thin lines. Therefore, road network extraction from large scale images refers to reliable road surface detection instead of road line extraction. In this paper, a novel automatic road network detection approach based on the combination of homogram segmentation and mathematical morphology is proposed, which includes three main steps: (i) the image is classified based on homogram segmentation to roughly identify the road network regions; (ii) the morphological opening and closing is employed to fill tiny holes and filter out small road branches; and (iii) the extracted road surface is further thinned by a thinning approach, pruned by a proposed method and finally simplified with Douglas-Peucker algorithm. Lastly, the results from some QuickBird images and aerial photos demonstrate the correctness and efficiency of the proposed process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes technologies we have developed to perform autonomous large-scale off-world excavation. A scale dragline excavator of size similar to that required for lunar excavation was made capable of autonomous control. Systems have been put in place to allow remote operation of the machine from anywhere in the world. Algorithms have been developed for complete autonomous digging and dumping of material taking into account machine and terrain constraints and regolith variability. Experimental results are presented showing the ability to autonomously excavate and move large amounts of regolith and accurately place it at a specified location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International assessments of student science achievement, and growing evidence of students' waning interest in school science, have ensured that the development of scientific literacy continues to remain an important educational priority. Furthermore, researchers have called for teaching and learning strategies to engage students in the learning of science, particularly in the middle years of schooling. This study extends previous national and international research that has established a link between writing and learning science. Specifically, it investigates the learning experiences of eight intact Year 9 science classes as they engage in the writing of short stories that merge scientific and narrative genres (i.e., hybridised scientific narratives) about the socioscientific issue of biosecurity. This study employed a triangulation mixed methods research design, generating both quantitative and qualitative data, in order to investigate three research questions that examined the extent to which the students' participation in the study enhanced their scientific literacy; the extent to which the students demonstrated conceptual understanding of related scientific concepts through their written artefacts and in interviews about the artefacts; and the extent to which the students' participation in the project influenced their attitudes toward science and science learning. Three aspects of scientific literacy were investigated in this study: conceptual science understandings (a derived sense of scientific literacy), the students' transformation of scientific information in written stories about biosecurity (simple and expanded fundamental senses of scientific literacy), and attitudes toward science and science learning. The stories written by students in a selected case study class (N=26) were analysed quantitatively using a series of specifically-designed matrices that produce numerical scores that reflect students' developing fundamental and derived senses of scientific literacy. All students (N=152) also completed a Likert-style instrument (i.e., BioQuiz), pretest and posttest, that examined their interest in learning science, science self-efficacy, their perceived personal and general value of science, their familiarity with biosecurity issues, and their attitudes toward biosecurity. Socioscientific issues (SSI) education served as a theoretical framework for this study. It sought to investigate an alternative discourse with which students can engage in the context of SSI education, and the role of positive attitudes in engaging students in the negotiation of socioscientific issues. Results of the study have revealed that writing BioStories enhanced selected aspects of the participants' attitudes toward science and science learning, and their awareness and conceptual understanding of issues relating to biosecurity. Furthermore, the students' written artefacts alone did not provide an accurate representation of the level of their conceptual science understandings. An examination of these artefacts in combination with interviews about the students' written work provided a more comprehensive assessment of their developing scientific literacy. These findings support extensive calls for the utilisation of diversified writing-to-learn strategies in the science classroom, and therefore make a significant contribution to the writing-to-learn science literature, particularly in relation to the use of hybridised scientific genres. At the same time, this study presents the argument that the writing of hybridised scientific narratives such as BioStories can be used to complement the types of written discourse with which students engage in the negotiation of socioscientific issues, namely, argumentation, as the development of positive attitudes toward science and science learning can encourage students' participation in the discourse of science. The implications of this study for curricular design and implementation, and for further research, are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.