976 resultados para extracellular ATP


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor in children and occurs mainly in the cerebellum. Important intracellular signaling molecules, such those present in the Sonic Hedgehog and Wnt pathways, are involved in its development and can also be employed to determine tumor grade and prognosis. Ectonucleotidases, particularly ecto-5'NT/CD73, are important enzymes in the malignant process of different tumor types regulating extracellular ATP and adenosine levels. Here, we investigated the activity of ectonucleotidases in three malignant human cell lines: Daoy and ONS76, being representative of primary MB, and the D283 cell line, derived from a metastatic MB. All cell lines secreted ATP into the extracellular medium while hydrolyze poorly this nucleotide, which is in agreement with the low expression and activity of pyrophosphate/phosphodiesterase, NTPDases and alkaline phosphatase. The analysis of AMP hydrolysis showed that Daoy and ONS76 completely hydrolyzed AMP, with parallel adenosine production (Daoy) and inosine accumulation (ONS76). On the other hand, D283 cell line did not hydrolyze AMP. Moreover, primary MB tumor cells, Daoy and ONS76 express the ecto-5'NT/CD73 while D283 representative of a metastatic tumor, revealed poor expression of this enzyme, while the ecto-adenosine deaminase showed higher expression in D283 compared to Daoy and ONS76 cells. Nuclear beta-catenin has been suggested as a marker for MB prognosis. Further it can promotes expression of ecto-5'NT/CD73 and suppression of adenosine deaminase. It was observed that Daoy and ONS76 showed greater nuclear beta-catenin immunoreactivity than D283, which presented mainly cytoplasmic immunoreactivity. In summary, the absence of ecto-5'NT/CD73 in the D283 cell line, a metastatic MB phenotype, suggests that high expression levels of this ectonucleotidase could be correlated with a poor prognosis in patients with MB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial segregation of the plasma membrane plays a prominent role in distinguishing and sorting a large number of signals a cell receives simultaneously. The plasma membrane comprises regions known as lipid rafts, which serve as signal-transduction hubs and platforms for sorting membrane-associated proteins. Ca(2+)-binding proteins of the annexin family have been ascribed a role in the regulation of raft dynamics. Glycosylphosphatidylinositol-anchored 5'-nucleotidase is an extracellular, raft-associated enzyme responsible for conversion of extracellular ATP into adenosine. Our results point to a regulation of ecto-5'-nucleotidase activity by Ca(2+)-dependent, annexin-mediated stabilization of membrane rafts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paracrine signalling mediated via cytokine secretion is essential for liver regeneration after hepatic resection, yet the mechanisms of cellular crosstalk between immune and parenchymal cells are still elusive. Interleukin-22 (IL-22) is released by immune cells and mediates strong hepatoprotective functions. However, it remains unclear if IL-22 is critical for the crosstalk between liver lymphocytes and parenchymal cells during liver regeneration after partial hepatectomy. Here we found that plasma levels of IL-22 and its upstream cytokine IL-23 are highly elevated in patients after major liver resection. In a mouse model of partial hepatectomy, deletion of IL-22 was associated with significantly delayed hepatocellular proliferation and an increase of hepatocellular injury and endoplasmic reticulum stress. Using Rag1-/- and Rag2-/- γc-/- mice we show that the main producers of IL-22 post partial hepatectomy are conventional natural killer cells and innate lymphoid cells type 1. Extracellular ATP, a potent danger molecule, is elevated in patients immediately after major liver resection. Antagonism of the P2 type nucleotide receptors P2X1 and P2Y6 significantly decreased IL-22 secretion ex vivo. In vivo, specific inhibition of P2X1 was associated with decreased IL-22 secretion, elevated liver injury and impaired liver regeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interleukin 1β (IL-1β), a secretory protein lacking a signal peptide, does not follow the classical endoplasmic reticulum-to-Golgi pathway of secretion. Here we provide the evidence for a “leaderless” secretory route that uses regulated exocytosis of preterminal endocytic vesicles to transport cytosolic IL-1β out of the cell. Indeed, although most of the IL-1β precursor (proIL-1β) localizes in the cytosol of activated human monocytes, a fraction is contained within vesicles that cofractionate with late endosomes and early lysosomes on Percoll density gradients and display ultrastructural features and markers typical of these organelles. The observation of organelles positive for both IL-1β and the endolysosomal hydrolase cathepsin D or for both IL-1β and the lysosomal marker Lamp-1 further suggests that they belong to the preterminal endocytic compartment. In addition, similarly to lysosomal hydrolases, secretion of IL-1β is induced by acidotropic drugs. Treatment of monocytes with the sulfonylurea glibenclamide inhibits both IL-1β secretion and vesicular accumulation, suggesting that this drug prevents the translocation of proIL-1β from the cytosol into the vesicles. A high concentration of extracellular ATP and hypotonic medium increase secretion of IL-1β but deplete the vesicular proIL-1β content, indicating that exocytosis of proIL-1β–containing vesicles is regulated by ATP and osmotic conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the induction of long-term potentiation (LTP) in hippocampal slices adenosine triphosphate (ATP) is secreted into the synaptic cleft, and a 48 kDa/50 kDa protein duplex becomes phosphorylated by extracellular ATP. All the criteria required as evidence that these two proteins serve as principal substrates of ecto-protein kinase activity on the surface of hippocampal pyramidal neurons have been fulfilled. This phosphorylation activity was detected on the surface of pyramidal neurons assayed after synaptogenesis, but not in immature neurons nor in glial cells. Addition to the extracellular medium of a monoclonal antibody termed mAb 1.9, directed to the catalytic domain of protein kinase C (PKC), inhibited selectively this surface protein phosphorylation activity and blocked the stabilization of LTP induced by high frequency stimulation (HFS) in hippocampal slices. This antibody did not interfere with routine synaptic transmission nor prevent the initial enhancement of synaptic responses observed during the 1-5 min period immediately after the application of HFS (the induction phase of LTP). However, the initial increase in the slope of excitatory postsynaptic potentials, as well as the elevated amplitude of the population spike induced by HFS, both declined gradually and returned to prestimulus values within 30-40 min after HFS was applied in the presence of mAb 1.9. A control antibody that binds to PKC but does not inhibit its activity had no effect on LTP. The selective inhibitory effects observed with mAb 1.9 provide the first direct evidence of a causal role for ecto-PK in the maintenance of stable LTP, an event implicated in the process of learning and the formation of memory in the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pre- and postsynaptic actions of exogenously applied ATP were investigated in intact and dissociated parasympathetic neurotics of rat submandibular ganglia. Nerve-evoked excitatory postsynaptic potentials (EPSPs) were not inhibited by the purinergic receptor antagonists, suramin and pyridoxal-phosphate-6-azophenyl-2 ' ,4 ' -disulphonic acid (PPADS), or the desensitising agonist, alpha,beta -methylene ATP. In contrast. EPSPs were abolished by the nicotinic acetylcholine receptor antagonists, hexamethonium and mecamylamine. Focal application of ATP (100 muM) had no effect on membrane potential of the postsynaptic neurone or on the amplitude of spontaneous EPSPs. Taken together, these results suggest the absence of functional purinergic (P2) receptors on the postganglionic neurone in situ. In contrast, focally applied ATP (100 muM) reversibly inhibited nerve-evoked EPSPs. Similarly, bath application of the non-hydrolysable analogue of ATP, ATP gammaS, reversibly depressed EPSPs amplitude, The inhibitory effects of ATP and ATP gammaS on nerve-evoked transmitter release were antagonised by bath application of either PPADS or suramin, suggesting ATP activates a presynaptic P2 purinoceptor to inhibit acetylcholine release from preganglionic nerves in the submandibular ganglia. In acutely dissociated postganglionic neurotics from rat submandibular ganglia. focal application of ATP (100 LM) evoked an inward current and subsequent excitatory response and action potential firing, which was reversibly inhibited by PPADS (10 muM). The expression of P2X purinoceptors in wholemount and dissociated submandibular ganglion neurones was examined using polyclonal antibodies raised against the extracellular domain of six P2X purinoceptor subtypes (P2X(1-6)). In intact wholemount preparations, only the P2X(5) purinoceptor subtype was found to be expressed in the submandibular ganglion neurones and no P2X immunoreactivity was detected in the nerve fibres innervating the ganglion. Surprisingly, in dissociated submandibular ganglion neurones, high levels of P2X(2) and P2X(4) purinoceptors immunoreactivity were found on the cell surface. This increase in expression of P2X(2) and P2X(4) purinoceptors in dissociated submandibular neurones could explain the increased responsiveness of the neurotics to exogenous ATP. We conclude that disruption of ganglionic transmission in vivo by either nerve damage or synaptic blockade may up-regulate P2X expression or availability and alter neuronal excitability. (C) 2001 IBRO. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (P-X/P-Cs) ranging from 1. 11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4, The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purinergic stimulation of airway epithelial cells induces Cl- secretion and modulates Na+ absorption by an unknown mechanism. To gain insight into this mechanism, we used a perfused micro-Ussing chamber to assess transepithelial voltage (V-te) and amiloride-sensitive short-circuit current (Isc-Amil) in mouse trachea. Exposure to apical ATP or UTP (each 100 mumol/l) caused a large initial increase in lumen negative V-te and I-sc corresponding to a transient Cl- secretion, while basolateral application of ATP/UTP induced only a small secretory response. Luminal, but not basolateral, application of nucleotides was followed by a sustained and reversible inhibition of Isc-Amil that was independent of extracellular Ca2+ or activation of protein kinase C and was not induced by carbachol (100 mumol/l) or the Ca2+ ionophore ionomycin (1 mumol/l). Removal of extracellular Cl- or exposure to 200 muM DIDS reduced UTP-mediated inhibition of Isc-Amil Substantially. The phospholipase inhibitor U73122 (10 mumol/l) and pertussis toxin (PTX 200 ng/ml) both attenuated UTP-induced Cl- secretion and inhibition of Isc-Amil. Taken together, these data imply a contribution of Cl- conductance and PTX-sensitive G proteins to nucleotide-dependent inhibition of the amiloride-sensitive Na+ current in the mouse trachea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl- secretion and inhibit amiloride-sensitive Na+ transport. CFTR has been suggested to conduct adenosine 5'-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na+ channels (ENaC) could be by release of ATP or uridine 5'-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y(2) receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl- channel blocker 4,4'diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl- transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N-2,2'-O-dibutyrylguanosine 3',5-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl-. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous cell lines that proliferate in chemically defined and simple media have been highly regarded as suitable alternatives for vaccine production. One such cell line is the AG1.CR.pIX avian cell line developed by PROBIOGEN. This cell line can be cultivated in a fully scalable suspension culture and adapted to grow in chemically defined, calf serum free, medium [1]–[5]. The medium composition and cultivation strategy are important factors for reaching high virus titers. In this project, a series of computational methods was used to simulate the cell’s response to different environments. The study is based on the metabolic model of the central metabolism proposed in [1]. In a first step, Metabolic Flux Analysis (MFA) was used along with measured uptake and secretion fluxes to estimate intracellular flux values. The network and data were found to be consistent. In a second step, Flux Balance Analysis (FBA) was performed to access the cell’s biological objective. The objective that resulted in the best predicted results fit to the experimental data was the minimization of oxidative phosphorylation. Employing this objective, in the next step Flux Variability Analysis (FVA) was used to characterize the flux solution space. Furthermore, various scenarios, where a reaction deletion (elimination of the compound from the media) was simulated, were performed and the flux solution space for each scenario was calculated. Growth restrictions caused by essential and non-essential amino acids were accurately predicted. Fluxes related to the essential amino acids uptake and catabolism, the lipid synthesis and ATP production via TCA were found to be essential to exponential growth. Finally, the data gathered during the previous steps were analyzed using principal component analysis (PCA), in order to assess potential changes in the physiological state of the cell. Three metabolic states were found, which correspond to zero, partial and maximum biomass growth rate. Elimination of non-essential amino acids or pyruvate from the media showed no impact on the cell’s assumed normal metabolic state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the current investigation was to establish an in-l'itro skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated. whole muscle (SOL and EDL) was dissected from Long Evans rats and incubated for 60 min in Sigma Medium-199 (resting tension (lg). bubbled with 95:5% 02:C02, 30 ± 2°C, and pH 7.4). Media osmolality was altered to simulate hypo-osmotic (190 ± 10 Osm) (HYPO) or hyper-osmotic conditions (400 ± 10 Osm) (HYPER) while an iso-osmotic condition (290± 1 0 Osm) (CON) served as a control (n= 17.19.17). Following incubation, relative muscle water content decreased with HYPER and increased with HYPO in both muscle types (p<0.05). The cross-sectional area of HYPO SOL type I and type II fibres increased (p<0.05) while the EDL type 11 fibre area decreased in HYPER and increascd from HYPO exposure. Furthermore, HYPER exposure in both muscles lead to decreased ATP and phosphocreatine (p<0.05) and increased creatine and lactate (p<0.05) compared to CON. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acutc alterations in muscle water content and resting muscle metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroma-epithelium relationships are of great relevance in prostatic morphogenesis and physiology, However, little knowledge exists about either stromal cells or extracellular matrix composition and arrangement in this system, Ultrastructural analysis revealed the existence of a microfibrillar system which occupies large areas of the rat prostatic stroma, In this work, we have applied immunocytochemistry and an ATP treatment for the ultrastructural identification of collagen type VI microfibrils, aiming at examining its participation in the prostatic microfibrillar network. Immunocytochemistry was also extended to a human case of prostatic nodular hyperplasia, Both methods succeeded in identifying collagen type VI in the rat ventral prostate, Collagen type VI is evenly distributed throughout the stroma but mainly associated with the basal lamina, collagen fibrils, and around the stromal cells, the use of ATP treatment allowed for the discrimination between collagen type VI and elastin-associated microfibrils, and demonstrated that these two classes of microfibrils establish an extended, mixed, and open network. The same aspects of association with the basal lamina, with stromal cells (particularly with smooth muscle cells), and with fibrillar components of the stroma were observed in the human tissue, We suggest that the collagen type VI and elastin-associated microfibril system may be involved in the control of some aspects of cellular behavior and may also play a structural role, maintaining the organ integrity after the deformations occurring under smooth muscle contraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Extracellular nucleotides act as potent mitogens for renal mesangial cells (MC). In this study we determined whether extracellular nucleotides trigger additional responses in MCs and the mechanisms involved. EXPERIMENTAL APPROACH: MC migration was measured after nucleotide stimulation in an adapted Boyden-chamber. Sphingosine kinase-1 (SK-1) protein expression was detected by Western blot analysis and mRNA expression quantified by real-time PCR. SK activity was measured by an in vitro kinase assay using sphingosine as substrate. KEY RESULTS: Nucleotide stimulation caused biphasic activation of SK-1, but not SK-2. The first peak occurred after minutes of stimulation and was followed by a second delayed peak after 4-24 h of stimulation. The delayed activation of SK-1 is due to increased SK-1 mRNA steady-state levels and de novo synthesis of SK-1 protein, and depends on PKC and the classical MAPK cascade. To see whether nucleotide-stimulated cell responses require SK-1, we selectively depleted SK-1 from cells by using small-interference RNA (siRNA). MC migration is highly stimulated by ATP and UTP; this is mimicked by exogenously added S1P. Depletion of SK-1 by siRNA drastically reduced the effect of ATP and UTP on cell migration but not on cell proliferation. Furthermore, MCs isolated from SK-1-deficient mice were completely devoid of nucleotide-induced migration. CONCLUSIONS AND IMPLICATIONS: These data show that extracellular nucleotides besides being mitogenic also trigger MC migration and this cell response critically requires SK-1 activity. Thus, pharmacological intervention of SK-1 may have impacts on situations where MC migration is important such as during inflammatory kidney diseases.