909 resultados para exploratory data analysis
Resumo:
The industrial activity is inevitably associated with a certain degradation of the environmental quality, because is not possible to guarantee that a manufacturing process can be totally innocuous. The eco-efficiency concept is globally accepted as a philosophy of entreprise management, that encourages the companies to become more competitive, innovative and environmentally responsible by promoting the link between its companies objectives for excellence and its objectives of environmental excellence issues. This link imposes the creation of an organizational methodology where the performance of the company is concordant with the sustainable development. The main propose of this project is to apply the concept of eco-efficiency to the particular case of the metallurgical and metal workshop industries through the development of the particular indicators needed and to produce a manual of procedures for implementation of the accurate solution.
Resumo:
This paper presents the creation and development of technological schools directly linked to the business community and to higher public education. Establishing themselves as the key interface between the two sectors they make a signigicant contribution by having a greater competitive edge when faced with increasing competition in the tradional markets. The development of new business strategies supported by references of excellence, quality and competitiveness also provides a good link between the estalishment of partnerships aiming at the qualification of education boards at a medium level between the technological school and higher education with a technological foundation. We present a case study as an example depicting the success of Escola Tecnológica de Vale de Cambra.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
This paper demonstrates the significance of culture in examining the relationshipbetween democratic capital and environmental performance.The aim is to examine the relationship among scores on the Environmental Performance Index and the two dimensions of cross cultural variation suggested by Ronald Inglehart and Christian Welzel. Significantional interrelationships among democracy, cultural and environmental sustaintability measures could be found, following the regression results. Firstly, higher levels of democratic capital stock are associated with better environmental performance. Secondly importance to distinguish between cultural groups could be confirmed.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Visual data mining, multi-dimensional scaling, POLARMAP, Sammon's mapping, clustering, outlier detection
Resumo:
The use of Geographic Information Systems has revolutionalized the handling and the visualization of geo-referenced data and has underlined the critic role of spatial analysis. The usual tools for such a purpose are geostatistics which are widely used in Earth science. Geostatistics are based upon several hypothesis which are not always verified in practice. On the other hand, Artificial Neural Network (ANN) a priori can be used without special assumptions and are known to be flexible. This paper proposes to discuss the application of ANN in the case of the interpolation of a geo-referenced variable.
Resumo:
Texte intégral: http://www.springerlink.com/content/3q68180337551r47/fulltext.pdf
Resumo:
Many multivariate methods that are apparently distinct can be linked by introducing oneor more parameters in their definition. Methods that can be linked in this way arecorrespondence analysis, unweighted or weighted logratio analysis (the latter alsoknown as "spectral mapping"), nonsymmetric correspondence analysis, principalcomponent analysis (with and without logarithmic transformation of the data) andmultidimensional scaling. In this presentation I will show how several of thesemethods, which are frequently used in compositional data analysis, may be linkedthrough parametrizations such as power transformations, linear transformations andconvex linear combinations. Since the methods of interest here all lead to visual mapsof data, a "movie" can be made where where the linking parameter is allowed to vary insmall steps: the results are recalculated "frame by frame" and one can see the smoothchange from one method to another. Several of these "movies" will be shown, giving adeeper insight into the similarities and differences between these methods
Resumo:
We take stock of the present position of compositional data analysis, of what has beenachieved in the last 20 years, and then make suggestions as to what may be sensibleavenues of future research. We take an uncompromisingly applied mathematical view,that the challenge of solving practical problems should motivate our theoreticalresearch; and that any new theory should be thoroughly investigated to see if it mayprovide answers to previously abandoned practical considerations. Indeed a main themeof this lecture will be to demonstrate this applied mathematical approach by a number ofchallenging examples
Resumo:
The application of compositional data analysis through log ratio trans-formations corresponds to a multinomial logit model for the shares themselves.This model is characterized by the property of Independence of Irrelevant Alter-natives (IIA). IIA states that the odds ratio in this case the ratio of shares is invariant to the addition or deletion of outcomes to the problem. It is exactlythis invariance of the ratio that underlies the commonly used zero replacementprocedure in compositional data analysis. In this paper we investigate using thenested logit model that does not embody IIA and an associated zero replacementprocedure and compare its performance with that of the more usual approach ofusing the multinomial logit model. Our comparisons exploit a data set that com-bines voting data by electoral division with corresponding census data for eachdivision for the 2001 Federal election in Australia
Resumo:
Examples of compositional data. The simplex, a suitable sample space for compositional data and Aitchison's geometry. R, a free language and environment for statistical computing and graphics
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data.It contains four classes corresponding to the four different types of compositional andpositive geometry (including the Aitchison geometry). It provides means for computation,plotting and high-level multivariate statistical analysis in all four geometries.These geometries are treated in an fully analogous way, based on the principle of workingin coordinates, and the object-oriented programming paradigm of R. In this way,called functions automatically select the most appropriate type of analysis as a functionof the geometry. The graphical capabilities include ternary diagrams and tetrahedrons,various compositional plots (boxplots, barplots, piecharts) and extensive graphical toolsfor principal components. Afterwards, ortion and proportion lines, straight lines andellipses in all geometries can be added to plots. The package is accompanied by ahands-on-introduction, documentation for every function, demos of the graphical capabilitiesand plenty of usage examples. It allows direct and parallel computation inall four vector spaces and provides the beginner with a copy-and-paste style of dataanalysis, while letting advanced users keep the functionality and customizability theydemand of R, as well as all necessary tools to add own analysis routines. A completeexample is included in the appendix
Resumo:
We shall call an n × p data matrix fully-compositional if the rows sum to a constant, and sub-compositional if the variables are a subset of a fully-compositional data set1. Such data occur widely in archaeometry, where it is common to determine the chemical composition of ceramic, glass, metal or other artefacts using techniques such as neutron activation analysis (NAA), inductively coupled plasma spectroscopy (ICPS), X-ray fluorescence analysis (XRF) etc. Interest often centres on whether there are distinct chemical groups within the data and whether, for example, these can be associated with different origins or manufacturing technologies
Resumo:
Presentation in CODAWORK'03, session 4: Applications to archeometry