968 resultados para exfoliated layers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniformity in bias tilt, for the polyvinyl alcohol(PVA)surface layer induced orientation of nematic liquid crystals, could be achieved for large area display panels, if one of the transparent electrodes is first directionally rubbed with fine abrasive; then both the electrodes coated with PVA, followed by directionally buffing the chemisorbed layers in the same direction. Uniformity may be due to increased 'train' configuration of the adsorbed macromolecule by falling on to microgrooves and maintaining the same sense of asymmetry for the looped segments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results are reported from an extensive series of experiments on boundary layers in which the location of pressure gradient and transition onset could be varied almost independently, by judicious use of tunnel wall liners and transition-fixing devices. The experiments show that the transition zone is sensitive to the pressure gradient especially near onset, and can be significantly asymmetric; no universal similarity appears valid in general. Observed intermittency distributions cannot be explained on the basis of the hypothesis, often made, that the spot propagates at speeds proportional to the local free-stream velocity but is otherwise unaffected by the pressure gradient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twelve strains of Pseudomonas pseudomallei were isolated from the soil and water of a sheep paddock over a two-year period. The organism was recovered from the clay layer of the soil profile as well as from water that seeps into this layer during the "wet" season. Five isolates were obtained before the commencement of the "wet" season; environmental factors appear to play an important role in the survival of Ps. pseudomallei during the "dry" season. Lower isolation rates were recorded than those indicated by workers in southeast Asia and Iran.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady laminar compressible boundary-layer flow over two-dimensional and axisymmetric bodies at the stagnation point with mass transfer has been studied for all second-order boundary layer effects when the basic potential flow admits selfsimilarity. The solutions for the governing equations are obtained by using an implicit finite-difference scheme. Computations have been carried out for different values of the parameters characterizing the unsteadiness in the free stream velocity, wall temperature, mass transfer rate and variable gas properties. The results are found to be strongly affected by the unsteadiness in the free stream velocity. For large injection rates the second-orderboundary layer effects may prevail over the first-order boundary layer, but reverse is true for suction. The wall temperature and the variation of the density-viscosity product across the boundary layer appreciably change the skin-friction and heat-transfer rates due to second-order boundary-layer effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-similar solution of the unsteady laminar compressible boundary-layer flow with variable properties at a three-dimensional stagnation point with mass transfer has been obtained when the free-stream velocity varies inversely as a linear function of time. The resulting ordinary differential equations have been solved numerically using an implicit finite-difference scheme. The results are found to be strongly dependent on the parameter characterizing the unsteadiness in the free-stream velocity. The velocity profiles show some features not encountered in steady flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The n=3 member of the Bi1.5Pb0.5 (Ca, Sr) n+1CunO2n+4+δ system has been prepared and characterized by X-ray diffraction and electron microscopy. High-Tc superconductivity in the n=3 member has been established by resistivity, AC susceptibility and microwave absorption measurements. It has a Tc of not, vert, similar 105K compared to a Tc of not, vert, similar 82K of the corresponding n=2 member.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydromagnetic Kelvin-Helmholtz (K-H) instability problem is studied for a three-layered system analytically by arriving at the marginal instability condition. As the magnetic field directions are taken to vary in the three regions, both the angle and finite thickness effects are seen on the instability criterion. When the relative flow speed of the plasmas on the two sides of the interfaces separating the inner and the surrounding layers is U < Uc, where Uc is the critical speed, the system is stable both for symmetric and asymmetric perturbations. However, unlike the case of the interface bounded by two semiinfinite media, Uc is no longer the minimum critical speed above which the system will be unstable for all wavenumbers; another critical speed U* > Uc is introduced due to the finiteness of the system. When Uc < U < U*, the instability can set in either through the symmetric or asymmetric mode, depending on the ratio of the plasma parameters and angle between the magnetic field directions across the boundaries. The instability arises for a finite range of wavenumbers, thus giving rise to the upper and lower cut-off frequencies for the spectra of hydromagnetic surface waves generated by the K-H instability mechanism. When U > U*, both the modes are unstable for short wavelengths. The results are finally used to explain some observational features of the dependence of hydromagnetic energy spectra in the magnetosphere on the interplanetary parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-similar solution of the unsteady laminar incompressible two-dimensional and axisymmetric stagnation point boundary layers for micropolar fluids governing the flow and heat transfer problem has been obtained when the free stream velocity and the square of the mass transfer vary inversely as a linear function of time. The nonlinear ordinary differential equations governing the flow have been solved numerically using a quasilinear finite-Difference scheme. The results indicate that the coupling parameter, mass transfer and unsteadiness in the free stream velocity strongly affect the skin friction, microrotation gradient and heat transfer whereas the effect of microrotation parameter is strong only on the microrotation gradient. The heat transfer is strongly dependent on the prandtl number whereas the skin friction gradient are unaffected by it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mean flow development in an initially turbulent boundary layer subjected to a large favourable pressure gradient beginning at a point x0 is examined through analyses expected a priori to be valid on either side of relaminarization. The ‘quasi-laminar’ flow in the later stages of reversion, where the Reynolds stresses have by definition no significant effect on the mean flow, is described by an asymptotic theory constructed for large values of a pressure-gradient parameter Λ, scaled on a characteristic Reynolds stress gradient. The limiting flow consists of an inner laminar boundary layer and a matching inviscid (but rotational) outer layer. There is consequently no entrainment to lowest order in Λ−1, and the boundary layer thins down to conserve outer vorticity. In fact, the predictions of the theory for the common measures of boundary-layer thickness are in excellent agreement with experimental results, almost all the way from x0. On the other hand the development of wall parameters like the skin friction suggests the presence of a short bubble-shaped reverse-transitional region on the wall, where neither turbulent nor quasi-laminar calculations are valid. The random velocity fluctuations inherited from the original turbulence decay with distance, in the inner layer, according to inverse-power laws characteristic of quasi-steady perturbations on a laminar flow. In the outer layer, there is evidence that the dominant physical mechanism is a rapid distortion of the turbulence, with viscous and inertia forces playing a secondary role. All the observations available suggest that final retransition to turbulence quickly follows the onset of instability in the inner layer.It is concluded that reversion in highly accelerated flows is essentially due to domination of pressure forces over the slowly responding Reynolds stresses in an originally turbulent flow, accompanied by the generation of a new laminar boundary layer stabilized by the favourable pressure gradient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady laminar compressible boundary-layer flow in the immediate vicinity of a two-dimensional stagnation point due to an incident stream whose velocity varies arbitrarily with time is considered. The governing partial differential equations, involving both time and the independent similarity variable, are transformed into new co-ordinates with finite ranges by means of a transformation which maps an infinite interval into a finite one. The resulting equations are solved by converting them into a matrix equation through the application of implicit finite-difference formulae. Computations have been carried out for two particular unsteady free-stream velocity distributions: (1) a constantly accelerating stream and (2) a fluctuating stream. The results show that in the former case both the skin-friction and the heat-transfer parameter increase steadily with time after a certain instant, while in the latter they oscillate thus responding to the fluctuations in the free-stream velocity.