968 resultados para excitation energy level
Resumo:
Ruminant production is a vital part of food industry but it raises environmental concerns, partly due to the associated methane outputs. Efficient methane mitigation and estimation of emissions from ruminants requires accurate prediction tools. Equations recommended by international organizations or scientific studies have been developed with animals fed conserved forages and concentrates and may be used with caution for grazing cattle. The aim of the current study was to develop prediction equations with animals fed fresh grass in order to be more suitable to pasture-based systems and for animals at lower feeding levels. A study with 25 nonpregnant nonlactating cows fed solely fresh-cut grass at maintenance energy level was performed over two consecutive grazing seasons. Grass of broad feeding quality, due to contrasting harvest dates, maturity, fertilisation and grass varieties, from eight swards was offered. Cows were offered the experimental diets for at least 2 weeks before housed in calorimetric chambers over 3 consecutive days with feed intake measurements and total urine and faeces collections performed daily. Methane emissions were measured over the last 2 days. Prediction models were developed from 100 3-day averaged records. Internal validation of these equations, and those recommended in literature, was performed. The existing in greenhouse gas inventories models under-estimated methane emissions from animals fed fresh-cut grass at maintenance while the new models, using the same predictors, improved prediction accuracy. Error in methane outputs prediction was decreased when grass nutrient, metabolisable energy and digestible organic matter concentrations were added as predictors to equations already containing dry matter or energy intakes, possibly because they explain feed digestibility and the type of energy-supplying nutrients more efficiently. Predictions based on readily available farm-level data, such as liveweight and grass nutrient concentrations were also generated and performed satisfactorily. New models may be recommended for predictions of methane emissions from grazing cattle at maintenance or low feeding levels.
Resumo:
Male broilers were used to evaluate the effects of different energy levels in finisher diets and age of slaughter on performance, production pattern and carcass yield. Experimental design was a 2x3 factorial arrangement: energy level (ME) in the finisher diet (3,200 and 3,600 kcal ME/kg) and age of slaughter (42, 49 and 56 days), resulting in six treatments with four replicates. The finisher diet was fed only in the last week of the growing period. Characteristics evaluated were feed consumption (FC), body weight gain (WG), feed conversion (FC), energy intake (EI), caloric conversion (CC), efficiency production index, production pattern, and carcass yield. The results showed better WG and CC for broilers fed 3,200 kcal ME/kg finisher diet. Broilers slaughtered at 42 and 49 days of age had better performance and higher annual production than broilers slaughtered at 56 days of age. Carcass yield was influenced by slaughter age and better breast yield was seen at 49 and 56 days than at 42 days of age. It was concluded that 3,200 kcal ME/kg induced the best overall performance. Poultry houses were efficiently used when broilers were slaughtered at 42 days of age. Meat:bone ratio was improved for broilers slaughtered at 49 and 56 days of age.
Resumo:
This study evaluated the effects of strain, stocking density and dietary energy level on the feathering of broiler chickens. Four trials were carried out between September 2000 and April 2002. There were 10,685 broiler chicks from the strains Ross 308, Cobb 500, Hybro PG, Hubbard, MPK, and Isa Vedette. The bids were reared at stocking densities varying between 10 and 16 birds/m² and were given diets containing different metabolizable energy levels. Broiler feathering was evaluated either by atrributing scores from 1 to 10 to feather covering along the thigh and back (visual inspection), or by determining the percentage weight of the feathers at 28 and 42 days of age. Increasing rearing densities resulted in poorer feathering, mainly if 12 or 13 birds/m² were compared with 16 birds/m². The strains showed different feathering; it was better in Cobb 500 and MPK birds, whereas Hubbard birds showed poorer feathering, mostly along the back. The energy level in the diet has also affected feathering scores. Medium energy level resulted in better feathering along the back at 28 days, and the low level, in better feathering along the thigh at 35 days of age. Finally, feather scores were better in females than in males.
Resumo:
Pigs are quite sensitive to high environmental temperatures and the thermoregulation mechanisms represent great expenses in energy for heating loss, reducing animal well-being and production performance, and altering carcass quality. The aim of this study was to assess the effects of sex and dietary energy level in growing-finishing pigs submitted to characteristic seasonal variation of temperature in subtropical humid climate, and to propose a mathematical model to predict growth performance and carcass characteristics. Twenty-eight crossbred growing-finishing pigs were randomly allotted to twelve treatments, in a 2x2x3 factorial trial (2 sex; 2 environmental conditions, and 3 energy levels). Heat stress condition (climatic chamber) showed temperatures of 31 oC at 7:00 and 22 oC at 17:00 (maximum of 33 °C) and thermal comfort condition (stall) showed temperatures of 18 °C at 7:00 and 24 °C (maximum of 27 °C). Pigs were fed ad libitum with diets containing 12.2 (low), 13.6 (medium) and 15.0 (high) MJ ME/ kg DM. Voluntary feed intake, daily weight gain, and final body weight were higher (P<0.01) at thermal comfort condition and were influenced by sex (P<0.01) in growing pigs. Feed to gain ratio decreased as the energy level increased (P<0.01), with values of 2.67, 2.59, and 2.32 (12.2, 13.6, and 15.0 MJ ME/kg DM, respectively). There was energy level and sex interaction only for daily weight gain. Regarding finishing pigs, environmental conditions also showed effects (P<0.01) on voluntary feed intake, daily weight gain, and final body weight. Performance of pigs was better at thermal comfort condition. Feed to gain ratio values were 3.55, 3.42, and 2.95 for low, medium, and high energy level, respectively. Interactions between energy level and sex were observed for voluntary feed intake, daily weight gain, and final body weight (P<0.05). Carcass yield and quality were affected by environmental condition and dietary energy level. Both hot and cold carcass weight increased as energy of ration increased. Cold carcass weight increased by 1.142 kg/MJ EM whereas backfat thickness was up to 252 mm/MJ EM. Longissimus thoracis muscle thickness was around 16 mm smaller in pigs under heat stress, but lean content was 2.68% higher in those animals. Regression equations were proposed to predict the performance values in the different situations studied.
Resumo:
The global attractor of a gradient-like semigroup has a Morse decomposition. Associated to this Morse decomposition there is a Lyapunov function (differentiable along solutions)-defined on the whole phase space- which proves relevant information on the structure of the attractor. In this paper we prove the continuity of these Lyapunov functions under perturbation. On the other hand, the attractor of a gradient-like semigroup also has an energy level decomposition which is again a Morse decomposition but with a total order between any two components. We claim that, from a dynamical point of view, this is the optimal decomposition of a global attractor; that is, if we start from the finest Morse decomposition, the energy level decomposition is the coarsest Morse decomposition that still produces a Lyapunov function which gives the same information about the structure of the attractor. We also establish sufficient conditions which ensure the stability of this kind of decomposition under perturbation. In particular, if connections between different isolated invariant sets inside the attractor remain under perturbation, we show the continuity of the energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.
Resumo:
It has been recently shown numerically that the transition from integrability to chaos in quantum systems and the corresponding spectral fluctuations are characterized by 1/f(alpha) noise with 1 <= alpha <= 2. The system of interacting trapped bosons is inhomogeneous and complex. The presence of an external harmonic trap makes it more interesting as, in the atomic trap, the bosons occupy partly degenerate single-particle states. Earlier theoretical and experimental results show that at zero temperature the low-lying levels are of a collective nature and high-lying excitations are of a single-particle nature. We observe that for few bosons, the P(s) distribution shows the Shnirelman peak, which exhibits a large number of quasidegenerate states. For a large number of bosons the low-lying levels are strongly affected by the interatomic interaction, and the corresponding level fluctuation shows a transition to a Wigner distribution with an increase in particle number. It does not follow Gaussian orthogonal ensemble random matrix predictions. For high-lying levels we observe the uncorrelated Poisson distribution. Thus it may be a very realistic system to prove that 1/f(alpha) noise is ubiquitous in nature.
Resumo:
It is a well-established fact that statistical properties of energy-level spectra are the most efficient tool to characterize nonintegrable quantum systems. The statistical behavior of different systems such as complex atoms, atomic nuclei, two-dimensional Hamiltonians, quantum billiards, and noninteracting many bosons has been studied. The study of statistical properties and spectral fluctuations in interacting many-boson systems has developed interest in this direction. We are especially interested in weakly interacting trapped bosons in the context of Bose-Einstein condensation (BEC) as the energy spectrum shows a transition from a collective nature to a single-particle nature with an increase in the number of levels. However this has received less attention as it is believed that the system may exhibit Poisson-like fluctuations due to the existence of an external harmonic trap. Here we compute numerically the energy levels of the zero-temperature many-boson systems which are weakly interacting through the van der Waals potential and are confined in the three-dimensional harmonic potential. We study the nearest-neighbor spacing distribution and the spectral rigidity by unfolding the spectrum. It is found that an increase in the number of energy levels for repulsive BEC induces a transition from a Wigner-like form displaying level repulsion to the Poisson distribution for P(s). It does not follow the Gaussian orthogonal ensemble prediction. For repulsive interaction, the lower levels are correlated and manifest level-repulsion. For intermediate levels P(s) shows mixed statistics, which clearly signifies the existence of two energy scales: external trap and interatomic interaction, whereas for very high levels the trapping potential dominates, generating a Poisson distribution. Comparison with mean-field results for lower levels are also presented. For attractive BEC near the critical point we observe the Shnirelman-like peak near s = 0, which signifies the presence of a large number of quasidegenerate states.
Resumo:
A highly dangerous situations for tractor driver is the lateral rollover in operating conditions. Several accidents, involving tractor rollover, have indeed been encountered, requiring the design of a robust Roll-Over Protective Structure (ROPS). The aim of the thesis was to evaluate tractor behaviour in the rollover phase so as to calculate the energy absorbed by the ROPS to ensure driver safety. A Mathematical Model representing the behaviour of a generic tractor during a lateral rollover, with the possibility of modifying the geometry, the inertia of the tractor and the environmental boundary conditions, is proposed. The purpose is to define a method allowing the prediction of the elasto-plastic behaviour of the subsequent impacts occurring in the rollover phase. A tyre impact model capable of analysing the influence of the wheels on the energy to be absorbed by the ROPS has been also developed. Different tractor design parameters affecting the rollover behaviour, such as mass and dimensions, have been considered. This permitted the evaluation of their influence on the amount of energy to be absorbed by the ROPS. The mathematical model was designed and calibrated with respect to the results of actual lateral upset tests carried out on a narrow-track tractor. The dynamic behaviour of the tractor and the energy absorbed by the ROPS, obtained from the actual tests, showed to match the results of the model developed. The proposed approach represents a valuable tool in understanding the dynamics (kinetic energy) and kinematics (position, velocity, angular velocity, etc.) of the tractor in the phases of lateral rollover and the factors mainly affecting the event. The prediction of the amount of energy to be absorbed in some cases of accident is possible with good accuracy. It can then help in designing protective structures or active security devices.
Resumo:
Carotenoids are important biomolecules that are ubiquitous in nature and find widespread application in medicine. In photosynthesis, they have a large role in light harvesting (LH) and photoprotection. They exert their LH function by donating their excited singlet state to nearby (bacterio)chlorophyll molecules. In photosynthetic bacteria, the efficiency of this energy transfer process can be as low as 30%. Here, we present evidence that an unusual pathway of excited state relaxation in carotenoids underlies this poor LH function, by which carotenoid triplet states are generated directly from carotenoid singlet states. This pathway, operative on a femtosecond and picosecond timescale, involves an intermediate state, which we identify as a new, hitherto uncharacterized carotenoid singlet excited state. In LH complex-bound carotenoids, this state is the precursor on the reaction pathway to the triplet state, whereas in extracted carotenoids in solution, this state returns to the singlet ground state without forming any triplets. We discuss the possible identity of this excited state and argue that fission of the singlet state into a pair of triplet states on individual carotenoid molecules constitutes the mechanism by which the triplets are generated. This is, to our knowledge, the first ever direct observation of a singlet-to-triplet conversion process on an ultrafast timescale in a photosynthetic antenna.
Resumo:
Resonant fluorescence line narrowing of the R1 line of the [Cr(ox)3]3− chromophore in [Rh(bpy)3][NaCr(ox)3]ClO4 at 1.6 K neither gives rise to the usual three-line pattern nor to spectral diffusion. Instead multi-line spectra with spacings equal to the zero-field splitting of the ground state are observed. This phenomenon is attributed to efficient non-radiative resonant energy transfer within the R1 line.
Resumo:
We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)