913 resultados para eucalypt stands
Resumo:
High levels of percentage green veneer recovery can be obtained from temperate eucalypt plantations. Recovery traits are affected by site and log position in the stem. Of the post-felling log traits studied, out-of-roundness was the best predictor of green recovery.
Resumo:
In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.
Resumo:
The invasive rust Puccinia psidii (myrtle rust) was detected in Australia in 2010 and is now established along the east coast from southern New South Wales to far north Queensland. Prior to reaching Australia, severe damage from P. psidii was mainly restricted to exotic eucalypt plantations in South America, guava plantations in Brazil, allspice plantations in Jamaica, and exotic Myrtaceous tree species in the USA; the only previous record of widespread damage in native environments is of endangered Eugenia koolauensis in Hawai’i. Using two rainforest tree species as indicators of the impact of P. psidii, we report for the first time severe damage to endemic Myrtaceae in native forests in Australia, after only 4 years’ exposure to P. psidii. A 3-year disease exclusion trial in a natural stand of Rhodamnia rubescens unequivocally showed that repeated, severe infection leads to gradual crown loss and ultimately tree mortality; trees were killed in less than 4 years. Significant (p < 0.001) correlations were found between both incidence (r = 0.36) and severity (r = 0.38) of P. psidii and subsequent crown loss (crown transparency). This provided supporting evidence to conclude a causal association between P. psidii and crown loss and tree mortality in our field assessments of R. rubescens and Rhodomyrtus psidioides across their native range. Assessments revealed high levels of damage by P. psidii to immature leaves, shoots and tree crowns—averaging 76 % (R. rubescens) and 95 % (R. psidioides) crown transparency—as well as tree mortality. For R. psidioides, we saw exceptionally high levels of tree mortality, with over half the trees surveyed dead and 40 % of stands with greater than 50 % tree mortality, including two stands where all trees were dead. Tree mortality was less prevalent for R. rubescens, with only 12 % of trees surveyed dead and two sites with greater than 50 % mortality. Any alternative causal agents for this tree mortality have been discounted. The ecological implications of this are unclear, but our work clearly illustrates the potential for P. psidii to negatively affect Australia’s biodiversity.
Resumo:
The forest vegetation takes up atmospheric carbon dioxide (CO2) in photosynthesis. Part of the fixed carbon is released back into the atmosphere during plant respiration but a substantial part is stored as plant biomass, especially in the stems of trees. Carbon also accumulates in the soil as litter and via the roots. CO2 is released into the atmosphere from these carbon stocks in the decomposition of dead biomass. Carbon balance of a forest stand is the difference between the CO2 uptake and CO2 efflux. This study quantifies and analyses the dynamics of carbon balance and component CO2 fluxes in four Southern Finnish Scots pine stands that covered the typical economic rotation time of 80 years. The study was based on direct flux measurements with chambers and eddy covariance (EC), and modelling of component CO2 fluxes. The net CO2 exchange of the stand was partitioned into component fluxes: photosynthesis of trees and ground vegetation, respiration of tree foliage and stems, and CO2 efflux from the soil. The relationships between the component fluxes and the environmental factors (light, temperature, atmospheric CO2, air humidity and soil moisture) were studied with mathematical modelling. The annual CO2 balance varied from a source of about 400 g C/m2 at a recently clearcut site to net CO2 uptake of 200 300 g C/m2 in a middle-aged (40-year-old) and a mature (75-year-old) stand. A 12-year-old sapling site was at the turning point from source to a sink of CO2. In the middle-aged stand, photosynthetic production was dominated by trees. Under closed pine canopies, ground vegetation accounted for 10 20% of stand photosynthesis whereas at the open sites the proportion and also the absolute photosynthesis of ground vegetation was much higher. The aboveground respiration was dominated by tree foliage which accounted for one third of the ecosystem respiration. Rate of wood respiration was in the order of 10% of total ecosystem respiration. CO2 efflux from the soil dominated the ecosystem respiratory fluxes in all phases of stand development. Instantaneous and delayed responses to the environmental driving factors could predict well within-year variability in photosynthetic production: In the short term and during the growing season photosynthesis follows primarily light while the seasonal variation is more strongly connected to temperature. The temperature relationship of the annual cycle of photosynthesis was found to be almost equal in the southern boreal zone and at the timberline in the northern boreal zone. The respiratory fluxes showed instantaneous and seasonal temperature relationships but they could also be connected to photosynthesis at an annual timescale.
Resumo:
To enhance the utilization of the wood, the sawmills are forced to place more emphasis on planning to master the whole production chain from the forest to the end product. One significant obstacle to integrating the forest-sawmill-market production chain is the lack of appropriate information about forest stands. Since the wood procurement point of view in forest planning systems has been almost totally disregarded there has been a great need to develop an easy and efficient pre-harvest measurement method, allowing separate measurement of stands prior to harvesting. The main purpose of this study was to develop a measurement method for pine stands which forest managers could use in describing the properties of the standing trees for sawing production planning. Study materials were collected from ten Scots pine stands (Pinus sylvestris) located in North Häme and South Pohjanmaa, in southern Finland. The data comprise test sawing data on 314 pine stems, dbh and height measures of all trees and measures of the quality parameters of pine sawlog stems in all ten study stands as well as the locations of all trees in six stands. The study was divided into four sub-studies which deal with pine quality prediction, construction of diameter and dead branch height distributions, sampling designs and applying height and crown height models. The final proposal for the pre-harvest measurement method is a synthesis of the individual sub-studies. Quality analysis resulted in choosing dbh, distance from stump height to the first dead branch (dead branch height), crown height and tree height as the most appropriate quality characteristics of Scots pine. Dbh and dead branch height are measured from each pine sample tree while height and crown height are derived from dbh measures by aid of mixed height and crown height models. Pine and spruce diameter distribution as well as dead branch height distribution are most effectively predicted by the kernel function. Roughly 25 sample trees seems to be appropriate in pure pine stands. In mixed stands the number of sample trees needs to be increased in proportion to the intensity of pines in order to attain the same level of accuracy.
Resumo:
Fire is an important driver of the boreal forest ecosystem, and a useful tool for the restoration of degraded forests. However, we lack knowledge on the ecological processes initiated by prescribed fires, and whether they bring about the desired restoration effects. The purpose of this study was to investigate the impacts of low-intensity experimental prescribed fires on four ecological processes in young commercial Scots pine (Pinus sylvestris) stands eight years after the burning. The processes of interest were tree mortality, dead wood creation, regeneration and fire scar formation. These were inventoried in twelve study plots, which were 30 m x 30 m in size. The plots belonged to two different stand age classes: 30-35 years or 45 years old at the time of burning. The study was partly a follow-up of study plots researched by Sidoroff et al. (2007) one year after burning in 2003. Tree mortality increased from 183 stems ha-1 in 2003 to 259 stems ha-1 in 2010, corresponding to 15 % and 21 % of stem number respectively. Most mortality was experienced in the stands of the younger age class, in smaller diameter classes and among species other than Scots pine. By 2010, the average mortality of Scots pine per plot was 18%, but varied greatly ranging from 0% to 63% of stem number. Delayed mortality, i.e. mortality that occurred between 2 and 8 years after fire, seemed to become more important with increasing diameter. The input of dead wood also varied greatly between plots, from none to 72 m3 ha-1, averaging at 12 m3 ha-1. The amount of fire scarred trees per plot ranged from none to 20 %. Four out of twelve plots (43 %) did not have any fire scars. Scars were on average small: 95% of scars were less than 4 cm in width, and 75% less than 40 cm in length. Owing to the light nature of the fire, the remaining overstorey and thick organic layer, regeneration was poor overall. The abundance of pine and other seedlings indicated a viable seed source existed, but the seedlings failed to establish under dense canopy. The number of saplings ranged from 0 to 12 333 stems ha-1. The results of this study indicate that a low intensity fire does not necessarily initiate the ecological processes of tree mortality, dead wood creation and regeneration in the desired scale. Fire scars, which form the basis of fire dating in fire history studies, did not form in all cases.
Resumo:
35 hojas : ilustraciones, fotografías.
Resumo:
9 hojas : ilustraciones, fotografías.