959 resultados para estimate
Resumo:
By deriving the equations for an error analysis of modeling inaccuracies for the combined estimation and control problem, it is shown that the optimum estimation error is orthogonal to the actual suboptimum estimate.
Resumo:
Fisheries management agencies around the world collect age data for the purpose of assessing the status of natural resources in their jurisdiction. Estimates of mortality rates represent a key information to assess the sustainability of fish stocks exploitation. Contrary to medical research or manufacturing where survival analysis is routinely applied to estimate failure rates, survival analysis has seldom been applied in fisheries stock assessment despite similar purposes between these fields of applied statistics. In this paper, we developed hazard functions to model the dynamic of an exploited fish population. These functions were used to estimate all parameters necessary for stock assessment (including natural and fishing mortality rates as well as gear selectivity) by maximum likelihood using age data from a sample of catch. This novel application of survival analysis to fisheries stock assessment was tested by Monte Carlo simulations to assert that it provided unbiased estimations of relevant quantities. The method was applied to the data from the Queensland (Australia) sea mullet (Mugil cephalus) commercial fishery collected between 2007 and 2014. It provided, for the first time, an estimate of natural mortality affecting this stock: 0.22±0.08 year −1 .
Resumo:
By deriving the equations for an error analysis of modeling inaccuracies for the combined estimation and control problem, it is shown that the optimum estimation error is orthogonal to the actual suboptimum estimate.
Resumo:
By deriving the equations for an error analysis of modeling inaccuracies for the combined estimation and control problem, it is shown that the optimum estimation error is orthogonal to the actual suboptimum estimate.
Resumo:
A method for determining the electron/hole transport length scale of model semiconducting polymer systems by scanning a narrow-light probe beam over the nonoverlapping anode/cathode region in asymmetric sandwich device structures is presented (see figure). Electron versus hole collection efficacy, and disorder and spatial anisotropy in the electrical transport parameters can be estimated.
Resumo:
Foliage density and leaf area index are important vegetation structure variables. They can be measured by several methods but few have been tested in tropical forests which have high structural heterogeneity. In this study, foliage density estimates by two indirect methods, the point quadrat and photographic methods, were compared with those obtained by direct leaf counts in the understorey of a wet evergreen forest in southern India. The point quadrat method has a tendency to overestimate, whereas the photographic method consistently and ignificantly underestimates foliage density. There was stratification within the understorey, with areas close to the ground having higher foliage densities.
Resumo:
A novel approach to estimate fringe order in Moire topography is proposed. Along with the light source used to create shadow of the grating on the object (as in conventional moire), proposed method uses a second light source which illuminates the object with color bands from the side. Width of each colored band is set to match that height which leads to a 2 pi phase shift in moire fringes. This facilitates one to rule the object with colored bands, which can be used to estimate fringe order using a color camera with relatively low spatial resolution with out any compromise in height sensitivity. Current proposal facilitates one to extract 3D profile of objects with surface discontinuities. It also deals with the possible usage of moire topography (when combined with the proposed method) in extracting 3D surface profile of many objects with height discontinuities using a single 2D image. Present article deals with theory and simulations of this novel side illumination based approach.
Resumo:
A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of `FBG length-refractive index strength' combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This article acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.
Resumo:
Sub-pixel classification is essential for the successful description of many land cover (LC) features with spatial resolution less than the size of the image pixels. A commonly used approach for sub-pixel classification is linear mixture models (LMM). Even though, LMM have shown acceptable results, pragmatically, linear mixtures do not exist. A non-linear mixture model, therefore, may better describe the resultant mixture spectra for endmember (pure pixel) distribution. In this paper, we propose a new methodology for inferring LC fractions by a process called automatic linear-nonlinear mixture model (AL-NLMM). AL-NLMM is a three step process where the endmembers are first derived from an automated algorithm. These endmembers are used by the LMM in the second step that provides abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual proportions are fed to multi-layer perceptron (MLP) architecture as input to train the neurons which further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. AL-NLMM is validated on computer simulated hyperspectral data of 200 bands. Validation of the output showed overall RMSE of 0.0089±0.0022 with LMM and 0.0030±0.0001 with the MLP based AL-NLMM, when compared to actual class proportions indicating that individual class abundances obtained from AL-NLMM are very close to the real observations.
Resumo:
Density-functional calculations are performed to explore the relationship between the work function and Young's modulus of RhSi, and to estimate the p-Schottky-barrier height (SBH) at the Si/RhSi(010) interface. It is shown that the Young's modulus and the workfunction of RhSi satisfy the generic sextic relation, proposed recently for elemental metals. The calculated p-SBH at the Si/RhSi interface is found to differ only by 0.04 eV in opposite limits, viz., no-pinning and strong pinning. We find that the p-SBH is reduced as much as by 0.28 eV due to vacancies at the interface. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4761994]
Resumo:
Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285-570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.
Resumo:
Bilateral filters perform edge-preserving smoothing and are widely used for image denoising. The denoising performance is sensitive to the choice of the bilateral filter parameters. We propose an optimal parameter selection for bilateral filtering of images corrupted with Poisson noise. We employ the Poisson's Unbiased Risk Estimate (PURE), which is an unbiased estimate of the Mean Squared Error (MSE). It does not require a priori knowledge of the ground truth and is useful in practical scenarios where there is no access to the original image. Experimental results show that quality of denoising obtained with PURE-optimal bilateral filters is almost indistinguishable with that of the Oracle-MSE-optimal bilateral filters.
Resumo:
Reliable estimates of species density are fundamental to planning conservation strategies for any species; further, it is equally crucial to identify the most appropriate technique to estimate animal density. Nocturnal, small-sized animal species are notoriously difficult to census accurately and this issue critically affects their conservation status, We carried out a field study in southern India to estimate the density of slender loris, a small-sized nocturnal primate using line and strip transects. Actual counts of study individuals yielded a density estimate of 1.61 ha(-1); density estimate from line transects was 1.08 ha(-1); and density estimates varied from 1.06 ha(-1) to 0.59 ha(-1) in different fixed-width strip transects. We conclude that line and strip transects may typically underestimate densities of cryptic, nocturnal primates.