987 resultados para enzyme replacement strategy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr(-)) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (similar to 64 and 59 kDa) and secreted (63-69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditionalmethods of screening high-producing recombinant cellsmay represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Morbus Hunter, eine lysosomale Speicherkrankheit, ist eine seltene, progrediente, x-chromosomal vererbte Stoffwechselkrankheit, die durch ein Defizit an Iduronat-2-sulfatase (IDS) hervorgerufen wird. Als Folge daraus erfolgt kein Abbau von Heparan- und Dermatansulfat und die Glykosaminoglykane reichern sich in de Lysosomen der Zelle an. M. Hunter ist eine Multisystemerkrankung und weist ein breites klinisches Spektrum mit interindividuell unterschiedlichem Krankheitsbeginn, Ausprägungen und Progression der Symptome auf. Seit 2007 besteht die Therapieoption einer Enzymersatztherapie (ERT) mit Elaprase®. Einige Patienten entwickeln Antikörper gegen das substituierte Enzym, welche partiell neutralisierende Eigenschaften besitzen. Ziel dieser Untersuchung war es zu klären, ob die Neutralisationskapazität der gebildeten Antikörper mittels einer Bestimmung im Mischserum festgestellt werden kann und ob persistierende Antikörper mit Neutralisationskapazität zu einer Einschränkung der Wirksamkeit der Enzymersatztherapie führen. Es sollte weiterhin untersucht werden, ob sich mittels Messung der neuronenspezifischen Enolase (NSE) und S-100 Rückschlüsse auf eine neuropathische Beteiligung ziehen lassen, da bis jetzt noch keine klinische oder biochemische Messmethode existiert, die für M. Hunter-Patienten eine verlässliche Vorhersage für eine neuropathische Beteiligung bietet. 30 Patienten wurden in die retrospektive/prospektive Kohortenstudie eingeschlossen. Bei der Bestimmung der IDS-Aktivität im Mischserum mit einem gesunden Menschen zeigten fünf der Patienten (17%) in zwölf Mischseren eine um ≥ 40% reduzierte Aktivität. Zwei (7%) der 30 untersuchten Patienten wurden mit dieser Methode als positiv für persistierende neutralisierende Antikörper identifiziert. Zum gleichen Ergebnis bezüglich der persistierenden neutralisierenden Antikörper führten die Anti-Elaprase®-Immunglobulin-Bestimmungen unter Berücksichtigung des Bestimmungszeitpunkts, die bei Shire Pharmaceuticals durchgeführt wurden. Die Untersuchungsergebnisse lassen den Schluss zu, dass die gebildeten Antikörper auch intraindividuell unterschiedlich sind. Zudem interagieren sie mit den verschiedensten Epitopen des Enzyms der ERT und besitzen nicht alle neutralisierende Eigenschaften. Aufgrund der heterogenen Zusammensetzung folgt die Hemmung der Enzymaktivität vermutlich keiner eindeutigen Kinetik. Anti-Elaprase®-Immunglobulin G spielt für die Neutralisationskapazität jedoch eine wichtige Rolle. Die Auswertung und Beurteilung der Einschränkung der Wirksamkeit der Therapie hervorgerufen durch die Antikörper mit Neutralisationskapazität gestaltete sich kompliziert. Im Ergebnis zeigte sich, dass sich die beiden Patienten mit persistierenden neutralisierenden Antikörpern in der Entwicklung der klinischen Parameter interindividuell stark unterschieden. Um einen Zusammenhang zwischen klinischem Verlauf und Antikörperbildung gegen die ERT zu finden, müssen in einem größeren Patientenkollektiv mehr Patienten mit persistierenden neutralisierenden Antikörpern identifiziert werden und der Einfluss der Antikörper untersucht werden. Die Untersuchung der NSE und S-100 ergab, dass weder die Konzentration der NSE noch der S-100 Rückschlüsse auf die neuropathische Beteiligung des Patienten zulässt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adult-type Pompe's disease (glycogen storage disease type II) has rarely been shown to present with dilatative arteriopathy, suggesting potential smooth muscle involvement in addition to lysosomal glycogen deposits usually restricted to skeletal muscle tissue. We report the case of a middle-aged man under enzyme replacement therapy presenting with an exceedingly large thoracic aortic aneurysm. Surprisingly, the histological work-up of resected aortic tissue revealed changes mimicking those observed in patients with classic connective tissue diseases. Enzyme replacement therapy, in addition to musculoskeletal and pulmonary treatment for patients with Pompe's disease, may prolong survival and lead to patients presenting with vascular alterations that may pose surgical and potential diagnostic challenges in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: We investigated the long-term outcome of gene therapy for severe combined immunodeficiency (SCID) due to the lack of adenosine deaminase (ADA), a fatal disorder of purine metabolism and immunodeficiency. METHODS: We infused autologous CD34+ bone marrow cells transduced with a retroviral vector containing the ADA gene into 10 children with SCID due to ADA deficiency who lacked an HLA-identical sibling donor, after nonmyeloablative conditioning with busulfan. Enzyme-replacement therapy was not given after infusion of the cells. RESULTS: All patients are alive after a median follow-up of 4.0 years (range, 1.8 to 8.0). Transduced hematopoietic stem cells have stably engrafted and differentiated into myeloid cells containing ADA (mean range at 1 year in bone marrow lineages, 3.5 to 8.9%) and lymphoid cells (mean range in peripheral blood, 52.4 to 88.0%). Eight patients do not require enzyme-replacement therapy, their blood cells continue to express ADA, and they have no signs of defective detoxification of purine metabolites. Nine patients had immune reconstitution with increases in T-cell counts (median count at 3 years, 1.07x10(9) per liter) and normalization of T-cell function. In the five patients in whom intravenous immune globulin replacement was discontinued, antigen-specific antibody responses were elicited after exposure to vaccines or viral antigens. Effective protection against infections and improvement in physical development made a normal lifestyle possible. Serious adverse events included prolonged neutropenia (in two patients), hypertension (in one), central-venous-catheter-related infections (in two), Epstein-Barr virus reactivation (in one), and autoimmune hepatitis (in one). CONCLUSIONS: Gene therapy, combined with reduced-intensity conditioning, is a safe and effective treatment for SCID in patients with ADA deficiency. (ClinicalTrials.gov numbers, NCT00598481 and NCT00599781.)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parkinsonism has been described in patients with Gaucher's disease (GD). We reviewed the 10 cases of patients with both parkinsonism and GD recorded in the French national GD registry, as well as 49 previously published cases. Relative to the general population, parkinsonism in GD patients (1) was more frequent, (2) occurred at an earlier age, (3) responded less well to levodopa, and (4) was more frequently associated with signs of cortical dysfunction. Enzyme replacement therapy (ERT) and substrate reduction therapy (SRT) were ineffective on GD-associated parkinsonism, suggesting that parkinsonism itself is not an indication for ERT or SRT in this setting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hunter syndrome (mucopolysaccharidosis type II) is a rare and life-limiting multisystemic disorder with an X-linked recessive pattern of inheritance. Short stature is a prominent feature of this condition. This analysis aimed to investigate the effects of enzyme replacement therapy with idursulfase on growth in patients enrolled in HOS - the Hunter Outcome Survey which is a multinational observational database. As of Jan 2012, height data before treatment were available for 567 of 740 males followed prospectively after HOS entry. Cross-sectional analysis showed that short stature became apparent after approximately 8 years of age; before this, height remained within the normal range. Age-corrected standardized height scores (z-scores) before and after treatment were assessed using piecewise regression model analysis in 133 patients (8-15 years of age at treatment start; data available on ≥ 1 occasion within +/-24 months of treatment start; growth hormone-treated patients excluded). Results showed that the slope after treatment (slope=-0.005) was significantly improved compared with before treatment (slope=-0.043) (difference=0.038, p=0.004). Analysis of covariates (age at treatment start, cognitive involvement, presence of puberty at the start of ERT, mutation type, functional classification), showed a significant influence on growth of mutation type (height deficit in terms of z-scores most pronounced in patients with deletions/large rearrangements/nonsense mutations, p<0.0001) and age (most pronounced in the 12-15-year group, p<0.0001). Cognitive involvement, pubertal status at the start of ERT and functional classification were not related to the growth deficit or response to treatment. In conclusion, the data showed an improvement in growth rate in patients with Hunter syndrome following idursulfase treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enzyme replacement therapy (ERT) with recombinant human alglucosidase alfa (rhGAA) in late-onset Pompe disease is moderately effective. Little is known about the clinical course after treatment termination and the resumption of ERT. In Switzerland, rhGAA therapy for Pompe disease was temporarily withdrawn after the federal court judged that the treatment costs were greatly out of proportion compared to the benefits. Re-treatment was initiated after the therapy was finally licensed. We retrospectively analysed seven Pompe patients, who underwent cessation and resumption of ERT (median age 43 years). The delay from first symptoms to final diagnosis ranged from 4 to 20 years. The demographics, clinical characteristics, assessments with the 6-min walking test (6-MWT), the predicted forced vital capacity (FVC) and muscle strength were analysed. Before initiation of ERT, all patients suffered from proximal muscle weakness of the lower limbs; one was wheelchair-bound and two patients received night-time non-invasive ventilation. Initial treatment stabilised respiratory function in most patients and improved their walking performance. After treatment cessation, upright FVC declined in most and the 6-MWT declined in all patients. Two patients needed additional non-invasive ventilatory support. Twelve months after resuming ERT, the respiratory and walking capacity improved again in most patients. However, aside for one patient, none of the patients reached the same level of respiratory function or distance walked in 6 min, as at the time of ERT withdrawal. We conclude that cessation of ERT in Pompe disease causes a decline in clinical function and should be avoided. Resuming treatment only partially recovers respiratory function and walking capacity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coagulase-negative staphylococci (CNS) are recognized as important pathogens and are particularly associated with foreign body infections. S. epidermidis accounts for approximately 75% of the infections caused by CNS. Three genes, sdrF, sdrG, and sdrH, were identified by screening a S. epidermidis genomic library with a probe encompassing the serine-aspartate dipeptide repeat-encoding region (region R) of clfA from S. aureus. SdrG has significant amino acid identity to ClfA, ClfB and other surface proteins of S. aureus. SdrG is also similar to a protein (Fbe) recently described by Nilsson, et al. (Infection and Immunity, 1998, 66:2666–73) from S. epidermidis. The N-terminal domain (A region) of SdrG was expressed as a his-tag fusion protein in E. coli. In an ELISA, this protein, rSdrG(50-597) was shown to bind specifically to fibrinogen (Fg). Western ligand blot analysis showed that SdrG binds the Bβ chain of Fg. To further characterize the rSdrG(50-597)-Fg interaction, truncates of the Fg Bβ chain were made and expressed as recombinant proteins in E. coli. SdrG was shown to bind the full-length Bβ chain (1462), as well as the N-terminal three-quarters (1-341), the N-terminal one-half (1-220) and the N-terminal one-quarter (1-95) Bβ chain constructs. rSdrG(50-597) failed to bind to the recombinant truncates that lacked the N-terminal 25 amino acid residues of this polypeptide suggesting that SdrG recognizes a site within this region of the Bβ chain. Inhibition ELISAs have shown that peptide mimetics, including β1–25, and β6–20, encompassing this 25 residue region can inhibit binding of rSdrG(50-597) to Fg coated wells. Using fluorescence polarization we were able to determine an equilibrium constant (KD) for the interaction of rSdrG(50-597) with the Fg Bβ chain peptide β1–25. The labeled peptide was shown to bind to rSdrG(50-597) with a KD of 0.14 ± 0.01μM. Because rSdrG(50-597) recognizes a site in the Fg Bβ chain close to the thrombin cleavage site, we investigated the possibility of the rSdrG(50-597) site either overlapping or lying close to this cleavage site. An ELISA showed that rSdrG(50-597) binding to thrombin-treated Fg was significantly reduced. In a clot inhibition assay rSdrG(50-597) was able to inhibit fibrin clot formation in a concentration dependent manner. Furthermore, rSdrG(50-597) was able to inhibit clot formation by preventing the release of fibrinopeptide B as determined by HPLC. To further define the interaction between rSdrG(50-597) and peptide β6–20, we utilized an alanine amino acid replacement strategy. The residues in β6–20 that appear to be important in rSdrG(50-597) binding to Fg, were confirmed by the rSdrG(273-597)-β6–20 co-crystal structure that was recently solved by our collaborators at University of Alabama-Birmingham. Additionally, rSdrG(50-597) was not able to bind to Fg from different animal species, rather it bound specifically to human Fg in an ELISA. This suggests that the sequence variation between Fg Bβ chains of different species, specifically with in the N-terminal 25 residues, affects the ability of rSdrG(50-597) binding to Fg, and this may explain why S. epidermidis is primarily a human pathogen. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reassembly of enzymes from peptide fragments has been used as a strategy for understanding the evolution, folding, and role of individual subdomains in catalysis and regulation of activity. We demonstrate an oligomerization-assisted enzyme reassembly strategy whereby fragments are covalently linked to independently folding and interacting domains whose interactions serve to promote efficient refolding and complementation of fragments, forming active enzyme. We show that active murine dihydrofolate reductase (E.C. 1.5.1.3) can be reassembled from complementary N- and C-terminal fragments when fused to homodimerizing GCN4 leucine zipper-forming sequences as well as heterodimerizing protein partners. Reassembly is detected by an in vivo selection assay in Escherichia coli and in vitro. The effects of mutations that disrupt fragment affinity or enzyme activity were assessed. The steady–state kinetic parameters for the reassembled mutant (Phe-31 → Ser) were determined; they are not significantly different from the full-length mutant. The strategy described here provides a general approach for protein dissection and domain swapping studies, with the capacity both for rapid in vivo screening as well as in vitro characterization. Further, the strategy suggests a simple in vivo enzyme-based detection system for protein–protein interactions, which we illustrate with two examples: ras–GTPase and raf–ras-binding domain and FK506-binding protein-rapamycin complexed with the target of rapamycin TOR2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (α-gal A). This enzymatic defect results in the accumulation of the glycosphingolipid globotriaosylceramide (Gb3; also referred to as ceramidetrihexoside) throughout the body. To investigate the effects of purified α-gal A, 10 patients with Fabry disease received a single i.v. infusion of one of five escalating dose levels of the enzyme. The objectives of this study were: (i) to evaluate the safety of administered α-gal A, (ii) to assess the pharmacokinetics of i.v.-administered α-gal A in plasma and liver, and (iii) to determine the effect of this replacement enzyme on hepatic, urine sediment and plasma concentrations of Gb3. α-Gal A infusions were well tolerated in all patients. Immunohistochemical staining of liver tissue approximately 2 days after enzyme infusion identified α-gal A in several cell types, including sinusoidal endothelial cells, Kupffer cells, and hepatocytes, suggesting diffuse uptake via the mannose 6-phosphate receptor. The tissue half-life in the liver was greater than 24 hr. After the single dose of α-gal A, nine of the 10 patients had significantly reduced Gb3 levels both in the liver and shed renal tubular epithelial cells in the urine sediment. These data demonstrate that single infusions of α-gal A prepared from transfected human fibroblasts are both safe and biochemically active in patients with Fabry disease. The degree of substrate reduction seen in the study is potentially clinically significant in view of the fact that Gb3 burden in Fabry patients increases gradually over decades. Taken together, these results suggest that enzyme replacement is likely to be an effective therapy for patients with this metabolic disorder.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mucopolysaccharidosis type VII (MPS VII; Sly syndrome) is an autosomal recessive lysosomal storage disorder due to an inherited deficiency of β-glucuronidase. A naturally occurring mouse model for this disease was discovered at The Jackson Laboratory and shown to be due to homozygosity for a 1-bp deletion in exon 10 of the gus gene. The murine model MPS VII (gusmps/mps) has been very well characterized and used extensively to evaluate experimental strategies for lysosomal storage diseases, including bone marrow transplantation, enzyme replacement therapy, and gene therapy. To enhance the value of this model for enzyme and gene therapy, we produced a transgenic mouse expressing the human β-glucuronidase cDNA with an amino acid substitution at the active site nucleophile (E540A) and bred it onto the MPS VII (gusmps/mps) background. We demonstrate here that the mutant mice bearing the active site mutant human transgene retain the clinical, morphological, biochemical, and histopathological characteristics of the original MPS VII (gusmps/mps) mouse. However, they are now tolerant to immune challenge with human β-glucuronidase. This “tolerant MPS VII mouse model” should be useful for preclinical trials evaluating the effectiveness of enzyme and/or gene therapy with the human gene products likely to be administered to human patients with MPS VII.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (α-gal A). This enzyme deficiency leads to impaired catabolism of α-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop painful neuropathy and vascular occlusions that progressively lead to cardiovascular, cerebrovascular, and renal dysfunction and early death. Although enzyme replacement therapy and bone marrow transplantation have shown promise in the murine analog of Fabry disease, gene therapy holds a strong potential for treating this disease in humans. Delivery of the normal α-gal A gene (cDNA) into a depot organ such as liver may be sufficient to elicit corrective circulating levels of the deficient enzyme. To investigate this possibility, a recombinant adeno-associated viral vector encoding human α-gal A (rAAV-AGA) was constructed and injected into the hepatic portal vein of Fabry mice. Two weeks postinjection, α-gal A activity in the livers of rAAV-AGA-injected Fabry mice was 20–35% of that of the normal mice. The transduced animals continued to show higher α-gal A levels in liver and other tissues compared with the untouched Fabry controls as long as 6 months after treatment. In parallel to the elevated enzyme levels, we see significant reductions in Gb3 levels to near normal at 2 and 5 weeks posttreatment. The lower Gb3 levels continued in liver, spleen, and heart, up to 25 weeks with no significant immune response to the virus or α-gal A. Also, no signs of liver toxicity occurred after the rAAV-AGA administration. These findings suggest that an AAV-mediated gene transfer may be useful for the treatment of Fabry disease and possibly other metabolic disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the use of adenovirus-mediated gene transfer to reverse the pathologic changes of lysosomal storage disease caused by beta-glucuronidase deficiency in the eyes of mice with mucopolysaccharidosis VII. A recombinant adenovirus carrying the human beta-glucuronidase cDNA coding region under the control of a non-tissue-specific promoter was injected intravitreally or subretinally into the eyes of mice with mucopolysaccharidosis VII. At 1-3 weeks after injection, the treated and control eyes were examined histochemically for beta-glucuronidase expression and histologically for phenotypic correction of the lysosomal storage defect. Enzymatic expression was detected 1-3 weeks after injection. Storage vacuoles in the retinal pigment epithelium (RPE) were still present 1 week after gene transfer but were reduced to undetectable levels by 3 weeks in both intravitreally and subretinally injected eyes. There was minimal evidence of ocular pathology associated with the viral injection. These data indicate that adenovirus-mediated gene transfer to the eye may provide for adjunctive therapy for lysosomal storage diseases affecting the RPE in conjunction with enzyme replacement and/or gene therapies for correction of systemic disease manifestations. The data also support the view that recombinant adenovirus may be useful as a gene therapy vector for retinal degenerations that result from a primary genetic defect in the RPE cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tethering factor p115 has been shown to facilitate Golgi biogenesis and membrane traffic in cells in culture. However, the role of p115 within an intact animal is largely unknown. Here, we document that RNAi-mediated depletion of p115 in C. elegans causes accumulation of the yolk protein (YP170) in body cavity and the retention of the yolk receptor RME-2 in the ER and the Golgi within oocytes.Structure-function analyses of p115 have identified two homology (H1-2) regions within the N-terminal globular head and the coiled-coil 1 (CC1) domain as essential for p115 function. We identify a novel C-terminal domain of p115 as necessary for Golgi ribbon formation and cargo trafficking. We show that p115 mutants lacking the fourth CC domain (CC4) act in a dominant negative manner to disrupt Golgi and prevent cargo trafficking in cells containing endogenous p115. Furthermore, using RNAi-mediated "replacement" strategy we show that CC4 is necessary for Golgi ribbon formation and membrane trafficking in cells depleted of endogenous p115.p115 has been shown to bind a subset of ER-Golgi SNAREs through CC1 and CC4 domains (Shorter et al., 2002). Our findings show that CC4 is required for p115 function and suggest that both the CC1 and the CC4 SNARE-binding motifs may participate in p115-mediated membrane tethering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enzyme replacement therapy (ERT) with recombinant human (rh) acid α-glucosidase (GAA) has prolonged the survival of patients. However, the paucity of cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle, where it is needed to take up rhGAA, correlated with a poor response to ERT by muscle in Pompe disease. Clenbuterol, a selective β2 receptor agonist, enhanced the CI-MPR expression in striated muscle through Igf-1 mediated muscle hypertrophy, which correlated with increased CI-MPR (also the Igf-2 receptor) expression. In this study we have evaluated 4 new drugs in GAA knockout (KO) mice in combination with an adeno-associated virus (AAV) vector encoding human GAA, 3 alternative β2 agonists and dehydroepiandrosterone (DHEA). Mice were injected with AAV2/9-CBhGAA (1E+11 vector particles) at a dose that was not effective at clearing glycogen storage from the heart. Heart GAA activity was significantly increased by either salmeterol (p<0.01) or DHEA (p<0.05), in comparison with untreated mice. Furthermore, glycogen content was reduced in the heart by treatment with DHEA (p<0.001), salmeterol (p<0.05), formoterol (p<0.01), or clenbuterol (p<0.01) in combination with the AAV vector, in comparison with untreated GAA-KO mice. Wirehang testing revealed that salmeterol and the AAV vector significantly increased performance, in comparison with the AAV vector alone (p<0.001). Similarly, salmeterol with the vector increased performance significantly more than any of the other drugs. The most effective individual drugs had no significant effect in absence of vector, in comparison with untreated mice. Thus, salmeterol should be further developed as adjunctive therapy in combination with either ERT or gene therapy for Pompe disease.