697 resultados para enjoyment of exercise


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous trials have reported that some haematological and biochemical parameters could be put together and be used to detect and fight recombinant erythropoietin doping. Unfortunately, none of the studies mentioned the necessity of taking pre-analytical precautions to avoid possible suspicious results coming from major plasma volume changes caused notably by dehydration. Therefore we studied the behaviour of the most common secondary blood markers before and after a strenuous physical activity to find out how reliable these parameters were. The soluble transferrin receptor and the haemoglobin concentrations as well as the haematocrit level increased significantly after effort, whereas the plasma EPO concentration and the reticulocyte count remained constant. On the other hand, if the values were corrected for haemoconcentration, the soluble transferrin receptor concentration remained stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inconsistencies about dynamic asymmetry between the on- and off-transient responses in .VO2 are found in the literature. Therefore the purpose of this study was to examine .VO2on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. .VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT) or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of .VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of .VO2 during cycling exercise in the heavy-intensity domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Fat oxidation kinetics: effect of exercise. During graded exercise, absolute whole body fat oxidation rates increase from low to moderate intensities, and then markedly decline at high intensities, implying an exercise intensity (Fatmax) at which the fat oxidation rate is maximal (MFO). The main aim of the present work was to examine the effect of exercise on whole body fat oxidation kinetics. For this purpose, a sinusoidal mathematical model (SIN) has been developped in the first study to provide an accurate description of the shape of fat oxidation kinetics during graded exercise, represented as a function of exercise intensity, and to determine Fatmax and MFO. The SIN model incorporates three independent variables (i.e., dilatation, symmetry, and translation) that correspond to main expected modulations of the basic fat oxidation curve because of factors such as mode of exercise or training status. The results of study 1 showed that the SIN model was a valuable tool to determine Fatmax and MFO, and to precisely characterize and quantify the different shape of fat oxidation kinetics through its three variables. The effectiveness of the SIN model to detect differences in fat oxidation kinetics induced by a specific factor was then confirmed in the second study, which quantitatively described and compared fat oxidation kinetics in two different popular modes of exercise: running and cycling. It was found that the mean fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with the symmetric parabolic curve in cycling. In the two subsequent studies, the effect of a prior endurance exercise of different intensities and durations on whole body fat oxidation kinetics was examined. Study 3 determined the impact of a 1-h continuous exercise bout at an exercise intensity corresponding to Fatmax on fat oxidation kinetics during a subsequent graded test, while study 4 investigated the effect of an exercise leading to a more pronounced muscle glycogen depletion. The results of these two latter studies showed that fat oxidation rates, MFO, and Fatmax were enhanced following endurance exercise, but were increased to a greater extent with a more severe mucle glycogen depletion, inducing therefore modifications in the postexercise fat oxidation kinetics (i.e., greater dilatation and rightward asymmetry). In perspective, further studies have been suggested 1) to assess physiological meaning of the three independent variables of the SIN model; and 2) to compare the effect of two different training programs on fat oxidation kinetics in obese subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Recombinant erythropoietin has a strong impact on aerobic power and is therefore one of the most potent doping agents in endurance sports. The anti-doping control of this synthetic hormone relies on the detection, in the urine, of its isoelectric pattern, which differs from that of the corresponding natural hormone, the latter being typically more acidic than the former. However, a small number of natural urinary patterns, referred to as "atypical patterns," are less acidic than the dominant form. Based on anecdotal evidence, the occurrence of such patterns seems to be related to particular strenuous exercises. This study aimed to demonstrate this relation using a strenuous exercise protocol. DESIGN: Seven athletes took part in a training protocol including a series of supramaximal short-duration exercises. Urine and blood samples were collected throughout the protocols. SETTINGS: World Cycling Center, Aigle, Switzerland, and research laboratories. PARTICIPANTS: Seven top-level athletes (cyclists) were involved in this study. MAIN OUTCOME MEASURES: Erythropoietin (EPO) isoelectric patterns were obtained by submitting blood and urine samples to isoelectric focusing. Additional protein dosages were performed. RESULTS: Supramaximal short-duration exercises induced the transformation of typical urinary natural EPO patterns into atypical ones. None of the obtained atypical patterns fulfilled the 3 criteria mandatory for reporting an adverse analytical finding. Serum EPO patterns were not affected by the exercises that caused the transformation of urinary patterns. CONCLUSION: An exercise-induced transient renal dysfunction is proposed as a hypothetic explanation for these observations that rely on parallel investigations of proteinuria in the same samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcohol (ethanol) is consumed on a daily basis by a large fraction of the population, and in many countries, light-to-moderate alcohol consumption is considered as an integral part of the diet. Although the relationship between alcohol intake and obesity is controversial, regular consumption of alcohol, through its effects in suppressing fat oxidation, is regarded as a risk factor for weight gain, increased abdominal obesity and hypertriglyceridemia. Indeed, alcohol taken with a meal leads to an increase in postprandial lipemia-an effect on postprandial metabolism that is opposite to that observed with exercise. Furthermore, although regular exercise training and/or a preprandial exercise session reduce postprandial lipemia independently of alcohol ingestion, the exercise-induced reduction in postprandial lipemia is nonetheless less pronounced when alcohol is also consumed with the meal. Whether or not alcohol influences exercise and sport performance remains contradictory. It is believed that alcohol has deleterious effects on the performance, although it may contribute to reduce pain and anxiety. The alcohol effects on sports performance depend on the type and dosage of alcohol, acute vs chronic administration, the alcohol elimination rate as well as the type of exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pilot study was conducted to determine the effect of a 10-week, low intensity, exercise training program on fear of falling and gait in fifty (mean age 78.1 years, 79% women) community-dwelling volunteers. Fear of falling (measured by falls self-efficacy) and gait performance were assessed at baseline and one week after program completion. At follow-up, participants modestly improved their falls self-efficacy and gait speed. To investigate whether this effect differed according to participants' fear of falling, secondary analyses stratified by subject's baseline falls efficacy were performed. Subjects with lower than average falls efficacy improved significantly their falls efficacy and gait performance, while no significant change occurred in the others. Small but significant improvements occurred after this pilot training program, particularly in subjects with low baseline falls efficacy. These results suggest that measures of falls efficacy might be useful for better targeting individuals most likely to benefit from similar training programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Exhausting exercise reduces the mitochondrial DNA (mtDNA) content in the skeletal muscle of healthy subjects due to oxidative damage. Since patients with chronic obstructive pulmonary disease (COPD) suffer enhanced oxidative stress during exercise, it was hypothesised that the mtDNA content will be further reduced. Objective To investigate the effects of exercise above and below the lactate threshold (LT) on the mtDNA content of skeletal muscle of patients with COPD. Methods Eleven patients with COPD (676 8 years; forced expiratory volume in 1s (FEV1)456 8%ref) and 10 healthy controls (666 4 years; FEV1 906 7% ref) cycled 45 min above LT (65% peak oxygen uptake (V9O2 peak)and another 7 patients (656 6 years; FEV1 506 4%ref)and 7 controls (566 9 years;FEV1 926 6%ref) cycled 45 min below their LT (50% V9O2 peak). Biopsies from the vastus lateralis muscle were obtained before exercise, immediately after and 1 h, 1 day and 1 week later to determine by PCR the mtDNA/nuclear DNA (nDNA) ratio (a marker of mtDNA content) and the expression of the peroxisome proliferator-activated receptor- g coactivator-1 a (PGC-1a)mRNA and the amount of reactive oxygen species produced during exercise was estimated from total V9O2. Results Skeletal muscle mtDNA/nDNA fell significantly after exercise above the LT both in controls and in patients with COPD, but the changes were greater in those with COPD. These changes correlated with production of reactive oxygen species, increases in manganese superoxide dismutase and PGC-1 a mRNA and returned to baseline values 1 week later. This pattern of response wa was also observed, albeit minimised, in patients exercising below the LT. Conclusions In patients with COPD, exercise enhances the decrease in mtDNA content of skeletal muscle and the expression of PGC-1 a mRNA seen in healthy subjects probably due to oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. PURPOSE: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. METHODS: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age ≥65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. RESULTS: A total of 42 studies (mean PEDro score of 5.0 ± 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 ± 4.9 kg, height 1.64 ± 0.05 m, body mass index 26.4 ± 1.9 kg/m(2), and gait speed 1.22 ± 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (±0.12) or 8.4 % (±9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 %; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 %; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 %, ES: 0.86) increased gait speed statistically and similarly. CONCLUSIONS: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maximal fat oxidation (MFO), as well as the exercise intensity at which it occurs (Fatmax), have been reported as lower in sedentary overweight individuals but have not been studied in trained overweight individuals. The aim of this study was to compare Fatmax and MFO in lean and overweight recreationally trained males matched for cardiorespiratory fitness (CRF) and to study the relationships between these variables, anthropometric characteristics, and CRF. Twelve recreationally trained overweight (high fatness (HiFat) group, 30.0% ± 5.3% body fat) and 12 lean males (low fatness (LoFat), 17.2% ± 5.7% body fat) matched for CRF (maximal oxygen consumption (V̇O2max) 39.0 ± 5.5 vs. 41.4 ± 7.6 mL·kg(-1)·min(-1), p = 0.31) and age (p = 0.93) performed a graded exercise test on a cycle ergometer. V̇O2max and fat and carbohydrate oxidation rates were determined using indirect calorimetry; Fatmax and MFO were determined with a mathematical model (SIN); and % body fat was assessed by air displacement plethysmography. MFO (0.38 ± 0.19 vs. 0.42 ± 0.16 g·min(-1), p = 0.58), Fatmax (46.7% ± 8.6% vs. 45.4% ± 7.2% V̇O2max, p = 0.71), and fat oxidation rates over a wide range of exercise intensities were not significantly different (p > 0.05) between HiFat and LoFat groups. In the overall cohort (n = 24), MFO and Fatmax were correlated with V̇O2max (r = 0.46, p = 0.02; r = 0.61, p = 0.002) but not with % body fat or body mass index (p > 0.05). Fat oxidation during exercise was similar in recreationally trained overweight and lean males matched for CRF. Consistently, substrate oxidation rates during exercise were not related to adiposity (% body fat) but were related to CRF. The benefits of high CRF independent of body weight and % body fat should be further highlighted in the management of obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several investigators have demonstrated that diabetes is associated with autonomic and myocardial dysfunction. Exercise training is an efficient non-pharmacological treatment for cardiac and metabolic diseases. The aim of the present study was to investigate the effects of exercise training on hemodynamic and autonomic diabetic dysfunction. After 1 week of diabetes induction (streptozotocin, 50 mg/kg, iv), male Wistar rats (222 ± 5 g, N = 18) were submitted to exercise training for 10 weeks on a treadmill. Arterial pressure signals were obtained and processed with a data acquisition system. Autonomic function and intrinsic heart rate were studied by injecting methylatropine and propranolol. Left ventricular function was assessed in hearts perfused in vitro by the Langendorff technique. Diabetes (D) bradycardia and hypotension (D: 279 ± 9 bpm and 91 ± 4 mmHg vs 315 ± 11 bpm and 111 ± 4 mmHg in controls, C) were attenuated by training (TD: 305 ± 7 bpm and 100 ± 4 mmHg). Vagal tonus was decreased in the diabetic groups and sympathetic tonus was similar in all animals. Intrinsic heart rate was lower in D (284 ± 11 bpm) compared to C and TD (390 ± 8 and 342 ± 14 bpm, respectively). Peak systolic pressure developed at different pressures was similar for all groups, but +dP/dt max was decreased and -dP/dt max was increased in D. In conclusion, exercise training reversed hypotension and bradycardia and improved myocardial function in diabetic rats. These changes represent an adaptive response to the demands of training, supporting a positive role of physical activity in the management of diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of short-term burst (5 min at 1.8 m/s) swimming and long-term cruiser (60 min at 1.2 m/s) swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK), pyruvate kinase (PK), fructose-1,6-bisphosphatase (FBPase), and phosphoglucomutase (PGM) all decreased to 47, 37, 37 and 67%, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI) and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH) and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of an exercise intervention on the total caloric intake (TCI) of breast cancer patients undergoing treatment. A secondary purpose was to determine whether or not a relationship existed between changes in TCI, body fat composition (%BF), and fatigue during the study, which lasted 6 months. Twenty females recently diagnosed with breast cancer, scheduled to undergo chemotherapy or radiation, were assigned randomly to an experimental (N = 10) or control group (N = 10). Outcome measures included TCI (3-day food diary), %BF (skinfolds), and fatigue (revised Piper Fatigue Scale). Each exercise session was conducted as follows: initial cardiovascular activity (6-12 min), followed by stretching (5-10 min), resistance training (15-30 min), and a cool-down (approximately 8 min). Significant changes in TCI were observed among groups (F1,18 = 8.582; P = 0.009), at treatments 2 and 3, and at the end of the study [experimental (1973 ± 419), control (1488 ± 418); experimental (1946 ± 437), control (1436 ± 429); experimental (2315 ± 455), control (1474 ± 294), respectively]. A significant negative correlation was found (Spearman rho(18) = -0.759; P < 0.001) between TCI and %BF and between TCI and fatigue levels (Spearman rho(18) = -0.541; P = 0.014) at the end of the study. In conclusion, the results of this study suggest that an exercise intervention administered to breast cancer patients undergoing medical treatment may assist in the mitigation of some treatment side effects, including decreased TCI, increased fatigue, and negative changes in body composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present investigation was undertaken to study the effect of β-blockers and exercise training on cardiac structure and function, respectively, as well as overall functional capacity in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CArKO). α2A/α2CArKO and their wild-type controls were studied for 2 months, from 3 to 5 months of age. Mice were randomly assigned to control (N = 45), carvedilol-treated (N = 29) or exercise-trained (N = 33) groups. Eight weeks of carvedilol treatment (38 mg/kg per day by gavage) or exercise training (swimming sessions of 60 min, 5 days/week) were performed. Exercise capacity was estimated using a graded treadmill protocol and HR was measured by tail cuff. Fractional shortening was evaluated by echocardiography. Cardiac structure and gastrocnemius capillary density were evaluated by light microscopy. At 3 months of age, no significant difference in fractional shortening or exercise capacity was observed between wild-type and α2A/α2CArKO mice. At 5 months of age, all α2A/α2CArKO mice displayed exercise intolerance and baseline tachycardia associated with reduced fractional shortening and gastrocnemius capillary rarefaction. In addition, α2A/ α2CArKO mice presented cardiac myocyte hypertrophy and ventricular fibrosis. Exercise training and carvedilol similarly improved fractional shortening in α2A/α2CArKO mice. The effect of exercise training was mainly associated with improved exercise tolerance and increased gastrocnemius capillary density while β-blocker therapy reduced cardiac myocyte dimension and ventricular collagen to wild-type control levels. Taken together, these data provide direct evidence for the respective beneficial effects of exercise training and carvedilol in α2A/α2CArKO mice preventing cardiac dysfunction. The different mechanisms associated with beneficial effects of exercise training and carvedilol suggest future studies associating both therapies.