960 resultados para enhanced crack-growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of residual stresses, induced by cold water quenching, on the morphology of fatigue crack fronts has been investigated in a powder metallurgy 8090 aluminium alloy, with and without reinforcement in the form of 20 wt-%SiC particles. Residual stress measurements reveal that the surface compressive stresses developed in these materials are significantly greater than in conventional metallurgy ingot 8090, because surface yielding occurs on quenching. The yield stresses of the powder route materials are greater than those of ingot produced 8090 and hence greater surface stresses can be maintained. In fatigue, severe crack front bowing is observed in the powder formed materials as a result of the reduction of the R ratio (minimum load/maximum load) by the compressive residual stresses at the sides of the specimen, causing premature crack closure and hence reducing the local driving force for fatigue crack growth ΔKeff. This distortion of the crack fronts introduces large errors into measurements of crack growth rate and threshold values of ΔK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue crack initiation and subsequent short crack growth behaviour of 2014-5wt%SiC aluminium alloy composites has been examined in 4-point bend loading using smooth bar specimens. The growth rates of long fatigue cracks have also been measured at different stress ratios using pre-cracked specimens. The distributions of SiC particles and of coarse constituent particles in the matrix (which arise as a result of the molten-metal processing and relatively slow cooling rate) have been investigated. Preferential crack initiation sites were found to be SiC-matrix interfaces, SiC particles associated with constituent particles and the coarse constituent particles themselves. For microstructurally short cracks the dispersed SiC particles also act as temporary crack arresters. In the long crack growth tests, higher fatigue crack growth rates were obtained than for monolithic alloys. This effect is attributed to the contribution of void formation, due to the decohesion of SiC particles, to the fatigue crack growth process in the composite. Above crack depths of about 200 μm 'short' crack growth rates were in good agreement with the long crack data, showing a Pris exponent, m = 4 in both cases. For the long crack and short crack growth tests little effect of specimen orientation and grain size was observed on fatigue crack growth rates, but, specimen orientation affected the toughness. No effect of stress ratio in the range R = 0.2-0.5 was seen for long crack data in the Paris region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the crack growth resistance of an experimental spray-formed extrusion with that of a commercial aluminium alloy, the two alloys having similar compositions but markedly different grain structures. Tensile and fracture behaviour is similar in both materials and is influenced by inclusion content. The two materials differ in their crack growth resistance, which is shown to be dependent upon grain size and shape. Environmentally-induced crack growth is favoured by aligned grain boundaries and small grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue crack growth tests have been carried out in a number of gaseous environments in order to assess their effects on the crack propagation resistance of BS 4360 grade 50EE, a weldable structural steel. Crack growth rates at 25 °C are up to 20 times higher in hydrogen than in air, but there is no effect when hydrogen is present as a 30% constituent of a simplified product gas (SPG). Indeed, crack growth rates in such a mixture are slightly lower than those measured in air, being comparable with those observed in an inert environment. The other gases present in the SPG are CO, CO2 and CH4, and it is probable that the carbon monoxide is responsible for nullifying the embrittling effects of hydrogen, by preferentially adsorbing on to the surface of the steel and thus blocking hydrogen entry. Experimental observations suggest that oxygen has the same effect when small quantities are allowed to diffuse into a non-flowing hydrogen environment around a propagating crack. The results are encouraging in terms of the suitability of conventional structural steels such as BS 4360 for gas plant applications. The gas mixtures present in such an environment would not have the severe detrimental effects on fatigue crack growth resistance which result from the presence of 'pure' hydrogen. © 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detrimental effects of a hydrogen atmosphere on the fatigue resistance of BS 4360 steel have been assessed by a comparison of crack growth rates in air and hydrogen at a low cycling frequency (0.1Hz), and at a number of temperature (25, 50 and 80 °C). The crack propagation rates in air are almost independent of temperature over this range, but those measured in hydrogen differ by more than an order of magnitude between 25 and 80 °C. The greatest enhancement is seen at 25 °C and at high values of ΔK, the maximum occurring between 40–45 MPa √m at each temperature. There is little hydrogen contribution to crack growth at values of ΔK below 20 MPa √m for R = 0.1. The enhancement of crack growth rates is reflected by the presence of ‘quasi-cleavage’ facets on the fatigue fracture surfaces of specimens tested in hydrogen. These are most apparent where the greatest increases in growth rate are recorded. The facets show linear markings, which run both parallel and perpendicular to the direction of crack growth. The former are analogous to the ‘river’ lines noted on brittle cleavage facets, and reflect the propagation direction. The latter are more unusual, and indicate that facet formation by hydrogen embrittlement during fatigue is a step-wise process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consideration of the influence of test technique and data analysis method is important for data comparison and design purposes. The paper highlights the effects of replication interval, crack growth rate averaging and curve-fitting procedures on crack growth rate results for a Ni-base alloy. It is shown that an upper bound crack growth rate line is not appropriate for use in fatigue design, and that the derivative of a quadratic fit to the a vs N data looks promising. However, this type of averaging, or curve fitting, is not useful in developing an understanding of microstructure/crack tip interactions. For this purpose, simple replica-to-replica growth rate calculations are preferable. © 1988.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatigue crack propagation behaviour of a low alloy, boron-containing steel has been examined after austenitizing at 900°C or 1250°C and tempering at a range of temperatures up to 400°C. Fatigue threshold values were found to vary with austenitizing and tempering treatment in a range between 3.3 to 6 MPa √m when tested at a stress ratio (R) of 0.2. Crack propagation rates in the Paris regime were insensitive to heat treatment variations. The crack propagation path was essentially transgranular in all conditions with small regions of intergranular facets appearing at growth rates around the knee of the da/dN vs ΔK curve. The crack front shape showed marked retardation in the centre of the specimen at low tempering temperatures. Experimental determinations and computer predictions of residual stress levels in the specimens indicated that this was due to a central residual compressive stress resulting from differential cooling rates and the volume change associated with the martensite transformation. The results are discussed in terms of microstructural and residual stress effects on fatigue behaviour. © 1987.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue thresholds and slow crack growth rates have been measured in a powder formed nickel-base superalloy from room temperature to 600°C. Two grain sizes were investigated: 5-12 μm and 50 μm. It is shown that the threshold increases with grain size, and the difference is most pronounced at room temperature. Although crack growth rates increase with temperature in both microstructures, the threshold is only temperature dependent in the material with the larger grain size. It is also only in the latter that the room temperature threshold falls when the load ratio is increased from 0.1 to 0.5. At 600°C the higher load ratio causes a 20% reduction in the threshold irrespective of grain size. The results are discussed in terms of surface roughness and oxide-induced crack closure, the former being critically related to the type of crystallographic crack growth, which is in turn shown to be both temperature and stress intensity dependent. © 1983.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a description of the features and mechanisms of facetted short crack growth in Ni-base superalloys, and briefly reviews existing short crack growth models in terms of their application to Ni-base alloys. The concept of “soft barriers” is introduced to produce a new two-phase model for local microstructural effects on short crack growth in Waspaloy. This is derived from detailed observations of crack growth through individual grains. The model differs from all previous approaches in highlighting the importance of crack path perturbations within grains. Potential applications of the model in alloy development are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue crack growth behaviour in a 15 wt% SiC particulate reinforced 6061 aluminium alloy has been examined using pre-cracked specimens. Crack initiation and early growth of fatigue cracks in smooth specimens has also been investigated using the technique of periodic replication. The composite contained a bimodal distribution of SiC particle sizes, and detailed attention was paid to interactions between the SiC particles and the growing fatigue-crack tip. At low stress intensity levels, the proportion of coarse SiC particles on the fatigue surfaces was much smaller than that on the metallographic sections, indicating that the fatigue crack tends to run through the matrix avoiding SiC particles. As the stress intensity level increases, the SiC particles ahead of the growing fatigue crack tip are fractured and the fatigue crack then links the fractured particles. The contribution of this monotonic fracture mode resulted in a higher growth rate for the composite than for the unreinforced alloy. An increase in the proportion of cracked, coarse SiC particles on the fatigue surface was observed for specimens tested at a higher stress ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue crack growth rate tests have been performed on Nimonic AP1, a powder formed Ni-base superalloy, in air and vacuum at room temperature. These show that threshold values are higher, and near-threshold (faceted) crack growth rates are lower, in vacuum than in air, although at high growth rates, in the “structure-insensitive” regime, R-ratio and a dilute environment have little effect. Changing the R-ratio from 0.1 to 0.5 in vacuum does not alter near-threshold crack growth rates very much, despite more extensive secondary cracking being noticeable at R= 0.5. In vacuum, rewelding occurs at contact points across the crack as ΔK falls. This leads to the production of extensive fracture surface damage and bulky fretting debris, and is thought to be a significant contributory factor to the observed increase in threshold values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of engineering materials in critical applications necessitates the accurate prediction of component lifetime for inspection and renewal purposes. In fatigue limited situations, it is necessary to be able to predict the growth rates of cracks from initiation at a defect through to final fracture. To this end, fatigue crack growth data are presented for different microstructures of typical nickel base superalloys used in gas turbine engines. Crack growth behaviour throughout the life history of the crack, i.e. from the short crack through to the long crack propagation regime, is described for each microstructural condition and discussed in terms of current theories of fatigue crack propagation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently a controversy has developed over whether crystallographic crack growth near threshold in nickel-base superalloys occurs along right brace 111 left brace slip planes or right brace 100 left brace planes at room temperature. In this work crack propagation is shown to occur on both right brace 100 left brace and right brace 111 left brace planes. The most common facet plane is right brace 111 left brace and this is the only orientation observed at the lowest stress intensities, but at higher stress intensities occasional right brace 100 left brace facets are also produced. This behavior is compared with similar results in aluminum alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Threshold stress intensity values, ranging from ∼6 to 16 MN m −3/2 can be obtained in powder-formed Nimonic AP1 by changing the microstructure. The threshold and low crack growth rate behaviour at room temperature of a number of widely differing API microstructures, with both ‘necklace’ and fully recrystallized grain structures of various sizes and uniform and bimodal γ′-distributions, have been investigated. The results indicate that grain size is an important microstructural parameter which can control threshold behaviour, with the value of threshold stress intensity increasing with increasing grain size, but that the γ′-distribution is also important. In this Ni-base alloy, as in many others, near threshold fatigue crack growth occurs in a crystallographic manner along {111} planes. This is due to the development of a dislocation structure involving persistent slip bands on {111} planes in the plastic zone, caused by the presence of ordered shearable precipitates in the microstructure. However, as the stress intensity range is increased, a striated growth mode takes over. The results presented show that this transition from faceted to striated growth is associated with a sudden increase in crack propagation rate and occurs when the size of the reverse plastic zone at the crack tip becomes equal to the grain size, independent of any other microstructural variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asphalt mixtures exhibit primary, secondary, and tertiary stages in sequence during a rutting deterioration. Many field asphalt pavements are still in service even when the asphalt layer is in the tertiary stage, and rehabilitation is not performed until a significant amount of rutting accompanied by numerous macrocracks is observed. The objective of this study was to provide a mechanistic method to model the anisotropic cracking of the asphalt mixtures in compression during the tertiary stage of rutting. Laboratory tests including nondestructive and destructive tests were performed to obtain the viscoelastic and viscofracture properties of the asphalt mixtures. Each of the measured axial and radial total strains in the destructive tests were decomposed into elastic, plastic, viscoelastic, viscoplastic, and viscofracture strains using the pseudostrain method in an extended elastic-viscoelastic correspondence principle. The viscofracture strains are caused by the crack growth, which is primarily signaled by the increase of phase angle in the tertiary flow. The viscofracture properties are characterized using the anisotropic damage densities (i.e., the ratio of the lost area caused by cracks to the original total area in orthogonal directions). Using the decomposed axial and radial viscofracture strains, the axial and radial damage densities were determined by using a dissipated pseudostrain energy balance principle and a geometric analysis of the cracks, respectively. Anisotropic pseudo J-integral Paris' laws in terms of damage densities were used to characterize the evolution of the cracks in compression. The material constants in the Paris' law are determined and found to be highly correlated. These tests, analysis, and modeling were performed on different asphalt mixtures with two binders, two air void contents, and three aging periods. Consistent results were obtained; for instance, a stiffer asphalt mixture is demonstrated to have a higher modulus, a lower phase angle, a greater flow number, and a larger n1 value (exponent of Paris' law). The calculation of the orientation of cracks demonstrates that the asphalt mixture with 4% air voids has a brittle fracture and a splitting crack mode, whereas the asphalt mixture with 7% air voids tends to have a ductile fracture and a diagonal sliding crack mode. Cracks of the asphalt mixtures in compression are inclined to propagate along the direction of the external compressive load. © 2014 American Society of Civil Engineers.