993 resultados para engineering mechanics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Problem solving is an essential element of civil engineering education. It has been I observed that students are best able to understand civil engineering theory when there is a ' practical application of it. Teaching theory alone has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure and "drop-out". This paper analyses the effectiveness of introducing practical design projects at an early stage within a civil engineering undergraduate program at Queensland University of Technology. In two of the essential basic subjects, Engineering Mechanics and Steel Structures, model projects which simulate realistic engineering exercises were introduced. Students were required to work in small groups to analyse, design and build the lightest I most efficient model bridges made of specific materials such as spaghetti, drinking straw, paddle pop sticks and balsa wood and steel columns for a given design loading/target capacity. The paper traces the success of the teaching strategy at each stage from its introduction through to the final student and staff evaluation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A straightforward analysis involving Fourier cosine transforms and the theory of Fourier seies is presented for the approximate calculation of the hydrodynamic pressure exerted on the vertical upstream face of a dam due to constant earthquake ground acceleration. The analysis uses the “Parseval relation” on the Fourier coefficients of square integrable functions, and directly brings out the mathematical nature of the approximate theory involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The governing differential equation of linear, elastic, thin, circular plate of uniform thickness, subjected to uniformly distributed load and resting on Winkler-Pasternak type foundation is solved using ``Chebyshev Polynomials''. Analysis is carried out using Lenczos' technique, both for simply supported and clamped plates. Numerical results thus obtained by perturbing the differential equation for plates without foundation are compared and are found to be in good agreement with the available results. The effect of foundation on central deflection of the plate is shown in the form of graphs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The classical theory of plates neglects the effects of rotatory inertia and shear deformation, and due to this assumption it is applicable only for thin plates. Mindlin presented an improved plate theory which is fairly accurate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method is presented to find nonstationary random seismic excitations with a constraint on mean square value such that the response variance of a given linear system is maximized. It is also possible to incorporate the dominant input frequency into the analysis. The excitation is taken to be the product of a deterministic enveloping function and a zero mean Gaussian stationary random process. The power spectral density function of this process is determined such that the response variance is maximized. Numerical results are presented for a single-degree system and an earth embankment modeled as shear beam.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the design of a windmill using a sail type rotor, there arose a need to protect the structure against damage due to overloading in excessive winds. This need was satisfied by using a novel form of load limiter in the support system of sails of the windmill. This note will analyze the load capacity wires so that one can design wires for any specified limit load.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the prediction of response of footings subjected to horizontal vibration, different types of contact shear distributions and displacement conditions are to be considered. Solutions using elastic half-space theory are not available for all the cases of shear distribution and displacement conditions. In this paper, solutions are obtained for the cases in which solutions are not available and the relevant coefficients are presented in tables which could be used in the appropriate equations for the prediction of dynamic response. Spring constants are evaluated and tabulated for different displacement and shear distribution conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mathematical models, for the stress analysis of symmetric multidirectional double cantilever beam (DCB) specimen using classical beam theory, first and higher-order shear deformation beam theories, have been developed to determine the Mode I strain energy release rate (SERR) for symmetric multidirectional composites. The SERR has been calculated using the compliance approach. In the present study, both variationally and nonvariationally derived matching conditions have been applied at the crack tip of DCB specimen. For the unidirectional and cross-ply composite DCB specimens, beam models under both plane stress and plane strain conditions in the width direction are applicable with good performance where as for the multidirectional composite DCB specimen, only the beam model under plane strain condition in the width direction appears to be applicable with moderate performance. Among the shear deformation beam theories considered, the performance of higher-order shear deformation beam theory, having quadratic variation for transverse displacement over the thickness, is superior in determining the SERR for multidirectional DCB specimen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Particle filters find important applications in the problems of state and parameter estimations of dynamical systems of engineering interest. Since a typical filtering algorithm involves Monte Carlo simulations of the process equations, sample variance of the estimator is inversely proportional to the number of particles. The sample variance may be reduced if one uses a Rao-Blackwell marginalization of states and performs analytical computations as much as possible. In this work, we propose a semi-analytical particle filter, requiring no Rao-Blackwell marginalization, for state and parameter estimations of nonlinear dynamical systems with additively Gaussian process/observation noises. Through local linearizations of the nonlinear drift fields in the process/observation equations via explicit Ito-Taylor expansions, the given nonlinear system is transformed into an ensemble of locally linearized systems. Using the most recent observation, conditionally Gaussian posterior density functions of the linearized systems are analytically obtained through the Kalman filter. This information is further exploited within the particle filter algorithm for obtaining samples from the optimal posterior density of the states. The potential of the method in state/parameter estimations is demonstrated through numerical illustrations for a few nonlinear oscillators. The proposed filter is found to yield estimates with reduced sample variance and improved accuracy vis-a-vis results from a form of sequential importance sampling filter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF) matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ, that simultaneously parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bending analysis of closed cylindrical shells subjected to asymmetric load and having different support conditions is of interest in the design of chimneys, water towers, oil storage tanks, etc. A simple method of analyzing a long cantilever cylindrical shell, subjected to asymmetric load, is presented in the paper, using Schorer’s shell theory and orthogonal functions. The application of the solution has been illustrated with an example of a cantilever shell subjected to wind loads. The results obtained for this problem have been compared with the previously available results to illustrate the accuracy of the results obtained here. The solution presented can also be extended to a cylindrical shell with other support conditions, as well as to the study of free vibration of a cylindrical shell. The present solution will be very useful for designers who need to obtain numerical results for specific problems with minimum computational effort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a single-story, bilinear-hysteretic structure, square in plan and supported on four columns, subjected to two horizontal ground motions is studied. The model is assumed to possess three degrees of freedom, viz., translational displacements along the two horizontal orthogonal directions and a rotation about the vertical axis. Interaction of the bending moments in the two perpendicular directions has been considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper proposes two methodologies for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. The method is also extended to a discrete structure in the form of a five-storied shear building and the simplicity of the method is demonstrated. The second method is through smeared damage model, where the damage is assumed constant for different segments of the beam and the lengths and centres of these segments are the known inputs. First-order perturbation method is used to derive the relevant expressions. Both these methods are based on distributed damage models and have been checked with experimental program on simply supported reinforced concrete beams, subjected to different stages of symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both the methods can be adopted together in a damage identification scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of time variant reliability analysis of existing structures subjected to stationary random dynamic excitations is considered. The study assumes that samples of dynamic response of the structure, under the action of external excitations, have been measured at a set of sparse points on the structure. The utilization of these measurements m in updating reliability models, postulated prior to making any measurements, is considered. This is achieved by using dynamic state estimation methods which combine results from Markov process theory and Bayes' theorem. The uncertainties present in measurements as well as in the postulated model for the structural behaviour are accounted for. The samples of external excitations are taken to emanate from known stochastic models and allowance is made for ability (or lack of it) to measure the applied excitations. The future reliability of the structure is modeled using expected structural response conditioned on all the measurements made. This expected response is shown to have a time varying mean and a random component that can be treated as being weakly stationary. For linear systems, an approximate analytical solution for the problem of reliability model updating is obtained by combining theories of discrete Kalman filter and level crossing statistics. For the case of nonlinear systems, the problem is tackled by combining particle filtering strategies with data based extreme value analysis. In all these studies, the governing stochastic differential equations are discretized using the strong forms of Ito-Taylor's discretization schemes. The possibility of using conditional simulation strategies, when applied external actions are measured, is also considered. The proposed procedures are exemplifiedmby considering the reliability analysis of a few low-dimensional dynamical systems based on synthetically generated measurement data. The performance of the procedures developed is also assessed based on a limited amount of pertinent Monte Carlo simulations. (C) 2010 Elsevier Ltd. All rights reserved.