993 resultados para energy law
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
The main idea of the Load-Unload Response Ratio (LURR) is that when a system is stable, its response to loading corresponds to its response to unloading, whereas when the system is approaching an unstable state, the response to loading and unloading becomes quite different. High LURR values and observations of Accelerating Moment/Energy Release (AMR/AER) prior to large earthquakes have led different research groups to suggest intermediate-term earthquake prediction is possible and imply that the LURR and AMR/AER observations may have a similar physical origin. To study this possibility, we conducted a retrospective examination of several Australian and Chinese earthquakes with magnitudes ranging from 5.0 to 7.9, including Australia's deadly Newcastle earthquake and the devastating Tangshan earthquake. Both LURR values and best-fit power-law time-to-failure functions were computed using data within a range of distances from the epicenter. Like the best-fit power-law fits in AMR/AER, the LURR value was optimal using data within a certain epicentral distance implying a critical region for LURR. Furthermore, LURR critical region size scales with mainshock magnitude and is similar to the AMR/AER critical region size. These results suggest a common physical origin for both the AMR/AER and LURR observations. Further research may provide clues that yield an understanding of this mechanism and help lead to a solid foundation for intermediate-term earthquake prediction.
Resumo:
Adhesive joints are largely employed nowadays as a fast and effective joining process. The respective techniques for strength prediction have also improved over the years. Cohesive Zone Models (CZM’s) coupled to Finite Element Method (FEM) analyses surpass the limitations of stress and fracture criteria and allow modelling damage. CZM’s require the energy release rates in tension (Gn) and shear (Gs) and respective fracture energies in tension (Gnc) and shear (Gsc). Additionally, the cohesive strengths (tn0 for tension and ts0 for shear) must also be defined. In this work, the influence of the CZM parameters of a triangular CZM used to model a thin adhesive layer is studied, to estimate their effect on the predictions. Some conclusions were drawn for the accuracy of the simulation results by variations of each one of these parameters.
Resumo:
The work in this paper deals with the development of momentum and thermal boundary layers when a power law fluid flows over a flat plate. At the plate we impose either constant temperature, constant flux or a Newton cooling condition. The problem is analysed using similarity solutions, integral momentum and energy equations and an approximation technique which is a form of the Heat Balance Integral Method. The fluid properties are assumed to be independent of temperature, hence the momentum equation uncouples from the thermal problem. We first derive the similarity equations for the velocity and present exact solutions for the case where the power law index n = 2. The similarity solutions are used to validate the new approximation method. This new technique is then applied to the thermal boundary layer, where a similarity solution can only be obtained for the case n = 1.
Resumo:
The long-term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth s climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz s conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a selffeedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars
Resumo:
In its 2007 session, the 82nd Iowa General Assembly passed, and Governor Culver signed into law, extensive and far-reaching new state energy policy legislation. Included was a directive to the Department of Natural Resources (DNR) to deliver to the Director of the Office of Energy Independence a report on six broad topics regarding Iowa’s energy resources.
Resumo:
In its 2007 Session, the Iowa General Assembly passed, and Governor Culver signed into law, extensive and far-reaching state energy policy legislation. This legislation created the Iowa Office of Energy Independence and the Iowa Power Fund. It also required a report to be issued each year detailing: • The historical use and distribution of energy in Iowa. • The growth rate of energy consumption in Iowa, including rates of growth for each energy source. • A projection of Iowa’s energy needs through the year 2025 at a minimum. • The impact of meeting Iowa’s energy needs on the economy of the state, including the impact of energy production and use on greenhouse gas emissions. • An evaluation of renewable energy sources, including the current and future technological potential for such sources. Much of the energy information for this report has been derived from the on-line resources of the Energy Information Administration (EIA) of the United States Department of Energy (USDOE). The EIA provides policy-independent data, forecasts and analyses on energy production, stored supplies, consumption and prices. For complete, economy-wide information, the most recent data available is for the year 2008. For some energy sectors, more current data is available from EIA and other sources and, when available, such information has been included in this report.
Resumo:
Less-lethal weapons are used in law enforcement to neutralize combative individuals and to disperse riot crowds. Local police recently used such an impact weapon, the Flash-Ball, in two different situations. This gun fires large rubber bullets with kinetic energies around 200 J. Although it is designed to avoid skin penetration, impacts at such energies may still create major trauma with associated severe injuries to internal organs. This is a report of 2 patients shot with the Flash-Ball who required medical attention. One could be discharged quickly, but the other required hospitalization for heart and lung contusion. Both patients required advanced investigations including computed tomography (CT) scan. The medical literature on injuries induced by less-lethal impact weapons is reviewed. Impacts from the Flash-Ball can cause significant injury to internal organs, even without penetration. Investigations as for other high-energy blunt traumas are called for in these cases.
Resumo:
This study is a survey of benefits and drawbacks of embedding a variable gearbox instead of a single reduction gear in electric vehicle powertrain from efficiency point of view. Losses due to a pair of spur gears meshing with involute teeth are modeled on the base of Coulomb’s law and fluid mechanics. The model for a variable gearbox is fulfilled and further employed in a complete vehicle simulation. Simulation model run for a single reduction gear then the results are taken as benchmark for other types of commonly used transmissions. Comparing power consumption, which is obtained from simulation model, shows that the extra load imposed by variable transmission components will shade the benefits of efficient operation of electric motor. The other accomplishment of this study is a combination of modified formulas that led to a new methodology for power loss prediction in gear meshing which is compatible with modern design and manufacturing technology.
Resumo:
In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.
Resumo:
Biofuels for transport are a renewable source of energy that were once heralded as a solution to multiple problems associated with poor urban air quality, the overproduction of agricultural commodities, the energy security of the European Union (EU) and climate change. It was only after the Union had implemented an incentivizing framework of legal and political instruments for the production, trade and consumption of biofuels that the problems of weakening food security, environmental degradation and increasing greenhouse gases through land-use changes began to unfold. In other words, the difference between political aims for why biofuels are promoted and their consequences has grown – which is also recognized by the EU policy-makers. Therefore, the global networks of producing, trading and consuming biofuels may face a complete restructure if the European Commission accomplishes its pursuit to sideline crop-based biofuels after 2020. My aim with this dissertation is not only to trace the manifold evolutions of the instruments used by the Union to govern biofuels but also to reveal how this evolution has influenced the dynamics of biofuel development. Therefore, I study the ways the EU’s legal and political instruments of steering biofuels are coconstitutive with the globalized spaces of biofuel development. My analytical strategy can be outlined through three concepts. I use the term ‘assemblage’ to approach the operations of the loose entity of actors and non-human elements that are the constituents of multi-scalar and -sectorial biofuel development. ‘Topology’ refers to the spatiality of this European biofuel assemblage and its parts whose evolving relations are treated as the active constituents of space, instead of simply being located in space. I apply the concept of ‘nomosphere’ to characterize the framework of policies, laws and other instruments that the EU applies and construes while attempting to govern biofuels. Even though both the materials and methods vary in the independent articles, these three concepts characterize my analytical strategy that allows me to study law, policy and space associated with each other. The results of my examinations underscore the importance of the instruments of governance of the EU constituting and stabilizing the spaces of producing and, on the other hand, how topological ruptures in biofuel development have enforced the need to reform policies. This analysis maps the vast scope of actors that are influenced by the mechanism of EU biofuel governance and, what is more, shows how they are actively engaging in the Union’s institutional policy formulation. By examining the consequences of fast biofuel development that are spatially dislocated from the established spaces of producing, trading and consuming biofuels such as indirect land use changes, I unfold the processes not tackled by the instruments of the EU. Indeed, it is these spatially dislocated processes that have pushed the Commission construing a new type of governing biofuels: transferring the instruments of climate change mitigation to land-use policies. Although efficient in mitigating these dislocated consequences, these instruments have also created peculiar ontological scaffolding for governing biofuels. According to this mode of governance, the spatiality of biofuel development appears to be already determined and the agency that could dampen the negative consequences originating from land-use practices is treated as irrelevant.
Resumo:
At present, there is much anxiety regarding the security of energy supplies; for example, the UK and other European States are set to become increasingly dependant upon imports of natural gas from states with which political relations are often strained. These uncertainties are felt acutely by the electricity generating sector, which is facing major challenges regarding the choice of fuel mix in the years ahead. Nuclear energy may provide an alternative; however, in the UK, progress in replacing the first generation reactors is exceedingly slow. A number of operators are looking to coal as a means of plugging the energy gap. However, in the light of ever more stringent legal controls on emissions, this step cannot be taken without the adoption of sophisticated pollution abatement technology. This article examines the role which legal concepts such as Best Available Techniques (BAT) must play in bringing about these changes.
Resumo:
Lorenz’s theory of available p otential energy (APE) remains the main framework for studying the atmospheric and oceanic energy cycles. Because the APE generation rate is the volume integral of a thermodynamic efficiency times the local diabatic heating/cooling rate, APE theory is often regarded as an extension of the theory of heat engines. Available energetics in classical thermodynamics, however, usually relies on the concept of exergy, and is usually measured relative to a reference state maximising entropy at constant energy, whereas APE’s reference state minimises p otential energy at constant entropy. This review seeks to shed light on the two concepts; it covers local formulations of available energetics, alternative views of the dynamics/thermodynamics coupling, APE theory and the second law, APE production/dissipation, extensions to binary fluids, mean/eddy decomp ositions, APE in incompressible fluids, APE and irreversible turbulent mixing, and the role of mechanical forcing on APE production.
Resumo:
Global horizontal wavenumber kinetic energy spectra and spectral fluxes of rotational kinetic energy and enstrophy are computed for a range of vertical levels using a T799 ECMWF operational analysis. Above 250 hPa, the kinetic energy spectra exhibit a distinct break between steep and shallow spectral ranges, reminiscent of dual power-law spectra seen in aircraft data and high-resolution general circulation models. The break separates a large-scale ‘‘balanced’’ regime in which rotational flow strongly dominates divergent flow and a mesoscale ‘‘unbalanced’’ regime where divergent energy is comparable to or larger than rotational energy. Between 230 and 100 hPa, the spectral break shifts to larger scales (from n 5 60 to n 5 20, where n is spherical harmonic index) as the balanced component of the flow preferentially decays. The location of the break remains fairly stable throughout the stratosphere. The spectral break in the analysis occurs at somewhat larger scales than the break seen in aircraft data. Nonlinear spectral fluxes defined for the rotational component of the flow maximize between about 300 and 200 hPa. Large-scale turbulence thus centers on the extratropical tropopause region, within which there are two distinct mechanisms of upscale energy transfer: eddy–eddy interactions sourcing the transient energy peak in synoptic scales, and zonal mean–eddy interactions forcing the zonal flow. A well-defined downscale enstrophy flux is clearly evident at these altitudes. In the stratosphere, the transient energy peak moves to planetary scales and zonal mean–eddy interactions become dominant.
Resumo:
We study two-dimensional (2D) turbulence in a doubly periodic domain driven by a monoscale-like forcing and damped by various dissipation mechanisms of the form νμ(−Δ)μ. By “monoscale-like” we mean that the forcing is applied over a finite range of wavenumbers kmin≤k≤kmax, and that the ratio of enstrophy injection η≥0 to energy injection ε≥0 is bounded by kmin2ε≤η≤kmax2ε. Such a forcing is frequently considered in theoretical and numerical studies of 2D turbulence. It is shown that for μ≥0 the asymptotic behaviour satisfies ∥u∥12≤kmax2∥u∥2, where ∥u∥2 and ∥u∥12 are the energy and enstrophy, respectively. If the condition of monoscale-like forcing holds only in a time-mean sense, then the inequality holds in the time mean. It is also shown that for Navier–Stokes turbulence (μ=1), the time-mean enstrophy dissipation rate is bounded from above by 2ν1kmax2. These results place strong constraints on the spectral distribution of energy and enstrophy and of their dissipation, and thereby on the existence of energy and enstrophy cascades, in such systems. In particular, the classical dual cascade picture is shown to be invalid for forced 2D Navier–Stokes turbulence (μ=1) when it is forced in this manner. Inclusion of Ekman drag (μ=0) along with molecular viscosity permits a dual cascade, but is incompatible with the log-modified −3 power law for the energy spectrum in the enstrophy-cascading inertial range. In order to achieve the latter, it is necessary to invoke an inverse viscosity (μ<0). These constraints on permissible power laws apply for any spectrally localized forcing, not just for monoscale-like forcing.