796 resultados para energy expenditure
Resumo:
Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.
Resumo:
Background & aims: Little is known about energy requirements in brain injured (TBI) patients, despite evidence suggesting adequate nutritional support can improve clinical outcomes. The study aim was to compare predicted energy requirements with measured resting energy expenditure (REE) values, in patients recovering from TBI.
Methods: Indirect calorimetry (IC) was used to measure REE in 45 patients with TBI. Predicted energy requirements were determined using FAO/WHO/UNU and Harris–Benedict (HB) equations. Bland– Altman and regression analysis were used for analysis.
Results: One-hundred and sixty-seven successful measurements were recorded in patients with TBI. At an individual level, both equations predicted REE poorly. The mean of the differences of standardised areas of measured REE and FAO/WHO/UNU was near zero (9 kcal) but the variation in both directions was substantial (range 591 to þ573 kcal). Similarly, the differences of areas of measured REE and HB demonstrated a mean of 1.9 kcal and range 568 to þ571 kcal. Glasgow coma score, patient status, weight and body temperature were signi?cant predictors of measured REE (p < 0.001; R2= 0.47).
Conclusions: Clinical equations are poor predictors of measured REE in patients with TBI. The variability in REE is substantial. Clinicians should be aware of the limitations of prediction equations when estimating energy requirements in TBI patients.
Resumo:
How animals manage time and expend energy has implications for survivorship. Being able to measure key metabolic costs of animals under natural conditions is therefore an important tool in behavioral ecology. One method for estimating activity-specific metabolic rate is via derived measures of acceleration, often 'overall dynamic body acceleration' (ODBA), recorded by an instrumented acceleration logger. ODBA has been shown to correlate well with rate of oxygen consumption (V ?o) in a range of species during activity in the laboratory. This study devised a method for attaching acceleration loggers to decapod crustaceans and then correlated ODBA against concurrent respirometry readings to assess accelerometry as a proxy for activity-specific energy expenditure in a model species, the American lobster Homarus americanus. Where the instrumented animals exhibited a sufficient range of activity levels, positive linear relationships were found between V ?o and ODBA over 20min periods at a range of ambient temperatures (6, 13 and 20°C). Mixed effect linear models based on these data and morphometrics provided reasonably strong predictive power for estimating activity-specific V ?o from ODBA. These V ?o-ODBA calibrations demonstrate the potential of accelerometry as an effective predictor of behavior-specific metabolic rate of crustaceans in the wild during periods of activity. © 2013 Elsevier Inc.
Resumo:
OBJECTIVE: To determine whether exposure to diabetes in utero affects resting energy expenditure (REE) and fuel oxidation in infants.
STUDY DESIGN: At 35 ± 5 days after birth, body composition and REE were measured in full-term offspring of Native American and Hispanic women with either well-controlled diabetes (13 girls, 11 boys) or normal healthy pregnancies (18 girls, 17 boys).
RESULTS: Control of dysglycemia during gestation in the women with diabetes mellitus met current clinical standards, shown by average glycated hemoglobin (5.9 ± 0.2%; 40.6 ± 2.3 mmol/mol). Infant body mass (offspring of women with diabetes: 4.78 ± 0.13, control offspring: 4.56 ± 0.08 kg) and body fatness (offspring of women with diabetes: 25.2 ± 0.6, control offspring: 24.2 ± 0.5 %) did not differ between groups. REE, adjusted for lean body mass, was 14% lower in offspring of women with diabetes (41.7 ± 2.3 kJ/h) than control offspring (48.6 ± 2.0, P = .025). Fat oxidation was 26% lower in offspring of women with diabetes (0.54 ± 0.05 g/h) than control offspring (0.76 ± 0.04, P < .01) but carbohydrate oxidation did not differ. Thus, fat oxidation accounted for a lower fraction of REE in the offspring of women with diabetes (49 ± 4%) than control offspring (60 ± 3%, P = .022). Mothers with diabetes were older and had higher prepregnancy body mass index than control mothers.
CONCLUSIONS: Well-controlled maternal diabetes did not significantly affect body mass or composition of offspring at 1-month old. However, infants with mothers with diabetes had reduced REE and fat oxidation, which could contribute to adiposity and future disease risk. Further studies are needed to assess the impact differences in age and higher prepregnancy body mass index.
Resumo:
The accurate estimation of total daily energy expenditure (TEE) in chronic kidney patients is essential to allow the provision of nutritional requirements; however, it remains a challenge to collect actual physical activity and resting energy expenditure in maintenance dialysis patients. The direct measurement of TEE by direct calorimetry or doubly labeled water cannot be used easily so that, in clinical practice, TEE is usually estimated from resting energy expenditure and physical activity. Prediction equations may also be used to estimate resting energy expenditure; however, their use has been poorly documented in dialysis patients. Recently, a new system called SenseWear Armband (BodyMedia, Pittsburgh, PA) was developed to assess TEE, but so far no data have been published in chronic kidney disease patients. The aim of this review is to describe new measurements of energy expenditure and physical activity in chronic kidney disease patients.
Resumo:
BACKGROUND: The endothelial nitric-oxide synthase (NOS3) gene encodes the enzyme (eNOS) that synthesizes the molecule nitric oxide, which facilitates endothelium-dependent vasodilation in response to physical activity. Thus, energy expenditure may modify the association between the genetic variation at NOS3 and blood pressure. METHODS: To test this hypothesis, we genotyped 11 NOS3 polymorphisms, capturing all common variations, in 726 men and women from the Medical Research Council (MRC) Ely Study (age (mean +/- s.d.): 55 +/- 10 years, body mass index: 26.4 +/- 4.1 kg/m(2)). Habitual/non-resting energy expenditure (NREE) was assessed via individually calibrated heart rate monitoring over 4 days. RESULTS: The intronic variant, IVS25+15 [G-->A], was significantly associated with blood pressure; GG homozygotes had significantly lower levels of diastolic blood pressure (DBP) (-2.8 mm Hg; P = 0.016) and systolic blood pressure (SBP) (-1.9 mm Hg; P = 0.018) than A-allele carriers. The interaction between NREE and IVS25+15 was also significant for both DBP (P = 0.006) and SBP (P = 0.026), in such a way that the effect of the GG-genotype on blood pressure was stronger in individuals with higher NREE (DBP: -4.9 mm Hg, P = 0.02. SBP: -3.8 mm Hg, P= 0.03 for the third tertile). Similar results were observed when the outcome was dichotomously defined as hypertension. CONCLUSIONS: In summary, the NOS3 IVS25+15 is directly associated with blood pressure and hypertension in white Europeans. However, the associations are most evident in the individuals with the highest NREE. These results need further replication and have to be ideally tested in a trial before being informative for targeted disease prevention. Eventually, the selection of individuals for lifestyle intervention programs could be guided by knowledge of genotype.
Resumo:
Obesity is rampant in modern society and growth hormone (GH) could be useful as adjunct therapy to reduce the obesity-induced cardiovascular damage. To investigate GH effects on obesity, initially 32 male Wistar rats were divided into two groups (n = 16): control (C) was fed standard-chow and water and hyper-caloric (H) was fed hypercaloric chow and 30% sucrose in its drinking water. After 45 days, both C and H groups were divided into two subgroups (n = 8): C + PL was fed standard-chow, water and received saline subcutaneously; C + GH was fed standard-chow, water, and received 2 mg/kg/day GH subcutaneously; H + PL was fed hypercaloric diet, 30% sucrose in its drinking water, and received saline subcutaneously; and H + GH was fed hypercaloric diet, 30% sucrose in its drinking water, and received GH subcutaneously. After 75 days of total experimental period, H + PL rats were considered obese, having higher body weight, body mass index, Lee-index, and atherogenic index (AI) compared to C + PL. Obesity was accompanied by enhanced myocardial lipid hydroperoxide (LH) and lactate dehydrogenase (LDH), as well of depressed energy expenditure (RMR) and oxygen consumption(VO(2))/body weight. H + GH rats had higher fasting RMR, as well as lower AI and myocardial LH than H + PL. Comparing C + GH with C + PL, despite no effects on morphometric parameters, lipid profile, myocardial LH, and LDH activity, GH enhanced fed RMR and myocardial pyruvate dehydrogenase. In conclusion, the present study brought new insights into the GH effects on obesity related cardiovascular damage demonstrating, for the first time, that GH regulated cardiac metabolic pathways, enhanced energy expenditure and improved the lipid profile in obesity condition. Growth hormone in standard fed condition also offered promising therapeutic value enhancing pyruvate-dehydrogenase activity and glucose oxidation in cardiac tissue, thus optimizing myocardial energy metabolism.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)