918 resultados para endometrial epithelial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

KRAS activation and PTEN inactivation are frequent events in endometrial tumorigenesis, occurring in 10% to 30% and 26% to 80% of endometrial cancers, respectively. Because we have recently shown activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 16% of endometrioid endometrial cancers, we sought to determine the genetic context in which FGFR2 mutations occur. Analysis of 116 primary endometrioid endometrial cancers revealed that FGFR2 and KRAS mutations were mutually exclusive, whereas FGFR2 mutations were seen concomitantly with PTEN mutations. Here, we show that shRNA knockdown of FGFR2 or treatment with a pan-FGFR inhibitor, PD173074, resulted in cell cycle arrest and induction of cell death in endometrial cancer cells with activating mutations in FGFR2. This cell death in response to FGFR2 inhibition occurred within the context of loss-of-function mutations in PTEN and constitutive AKT phosphorylation, and was associated with a marked reduction in extracellular signal-regulated kinase 1/2 activation. Together, these data suggest that inhibition of FGFR2 may be a viable therapeutic option in endometrial tumors possessing activating mutations in FGFR2, despite the frequent abrogation of PTEN in this cancer type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endometrial carcinoma is the most common gynecological malignancy in the United States. Although most women present with early disease confined to the uterus, the majority of persistent or recurrent tumors are refractory to current chemotherapies. We have identified a total of 11 different FGFR2 mutations in 3/10 (30%) of endometrial cell lines and 19/187 (10%) of primary uterine tumors. Mutations were seen primarily in tumors of the endometrioid histologic subtype (18/115 cases investigated, 16%). The majority of the somatic mutations identified were identical to germline activating mutations in FGFR2 and FGFR3 that cause Apert Syndrome, Beare-Stevenson Syndrome, hypochondroplasia, achondroplasia and SADDAN syndrome. The two most common somatic mutations identified were S252W (in eight tumors) and N550K (in five samples). Four novel mutations were identified, three of which are also likely to result in receptor gain-of-function. Extensive functional analyses have already been performed on many of these mutations, demonstrating they result in receptor activation through a variety of mechanisms. The discovery of activating FGFR2 mutations in endometrial carcinoma raises the possibility of employing anti-FGFR molecularly targeted therapies in patients with advanced or recurrent endometrial carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although molecularly targeted therapies have been effective in some cancer types, no targeted therapy is approved for use in endometrial cancer. The recent identification of activating mutations in fibroblast growth factor receptor 2 (FGFR2) in endometrial tumors has generated a new avenue for the development of targeted therapeutic agents. The majority of the mutations identified are identical to germline mutations in FGFR2 and FGFR3 that cause craniosynostosis and hypochondroplasia syndromes and result in both ligand-independent and ligand-dependent receptor activation. Mutations that predominantly occur in the endometrioid subtype of endometrial cancer, are mutually exclusive with KRAS mutation, but occur in the presence of PTEN abrogation. In vitro studies have shown that endometrial cancer cell lines with activating FGFR2 mutations are selectively sensitive to a pan-FGFR inhibitor, PD173074. Several agents with activity against FGFRs are currently in clinical trials. Investigation of these agents in endometrial cancer patients with activating FGFR2 mutations is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sericin and fibroin are the two major proteins in the silk fibre produced by the domesticated silkworm, Bombyx mori. Fibroin has been extensively investigated as a biomaterial. We have previously shown that fibroin can function successfully as a substratum for growing cells of the eye. Sericin has been so far neglected as a biomaterial because of suspected allergenic activity. However, this misconception has now been dispelled, and sericin’s biocompatibility is currently indisputable. Aiming at promoting sericin as a possible substratum for the growth of corneal cells in order to make tissue-engineered constructs for the restoration of the ocular surface, in this study we investigated the attachment and growth in vitro of human corneal limbal epithelial cells (HLECs) on sericin-based membranes. Sericin was isolated and regenerated from the silkworm cocoons by an aqueous procedure, manufactured into membranes, and characterized (mechanical properties, structural analysis, contact angles). Primary cell cultures from two donors were established in serum-supplemented media in the presence of murine feeder cells. Membranes made of sericin and fibroin-sericin blends were assessed in vitro as substrata for HLECs in a serum-free medium, in a cell attachment assay and in a 3-day cell growth experiment. While the mechanical characteristics of sericin were found to be inferior to those of fibroin, its ability to enhance the attachment of HLECs was significantly superior to fibroin, as revealed by the PicoGreen® assay. Evidence was also obtained that cells can grow and differentiate on these substrata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membranes prepared from a protein, fibroin, isolated from domesticated silkworm (Bombyx mori) silk, support the cultivation of human limbal epithelial (HLE) cells and thus display significant potential as biomaterials for ocular surface reconstruction. We presently extend this promising avenue of research by directly comparing the attachment, morphology and phenotype of primary HLE cell cultures grown on fibroin to that observed on donor amniotic membrane (AM), the current clinical standard substrate for HLE transplantation. Fibroin membranes measuring 6.3 ± 0.5 μm (mean ± sd) in thickness and permeable to FITC dextran of a molecular weight up to 70 kDa, were used. Attachment of HLE cells to fibroin was similar to that supported by tissue culture plastic but approximately 6-fold less than that observed on AM. Nevertheless, epithelia constructed from HLE on fibroin maintained evidence of corneal phenotype (K3/K12 expression) and displayed a comparable number and distribution of ΔNp63+ progenitor cells to that seen in cultures grown on AM. These results support the suitability of membranes constructed from Bombyx mori silk fibroin as substrata for HLE cultivation and encourage progression to studies of efficacy in preclinical models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While a protective long-term effect of parity on endometrial cancer risk is well established, the impact of timing of births is not fully understood. We examined the relationship between endometrial cancer risk and reproductive characteristics in a population-based cohort of 2,674,465 Swedish women, 20–72 years of age. During follow-up from 1973 through 2004, 7,386 endometrial cancers were observed. Compared to uniparous women, nulliparous women had a significantly elevated endometrial cancer risk (hazard ratio [HR] = 1.32, 95% confidence interval [CI], 1.22–1.42). Endometrial cancer risk decreased with increasing parity; compared to uniparous women, women with ≥4 births had a HR=0.66 (95% CI, 0.59–0.74); p-trend < 0.001. Among multiparous women, we observed no relationship of risk with age at first birth after adjustment for other reproductive factors. While we initially observed a decreased risk with later ages at last birth, this appeared to reflect a stronger relationship with time since last birth, with women with shorter times being at lowest risk. In models for multiparous women that included number of births, age at first and last birth, and time since last birth, age at last birth was not associated with endometrial cancer risk, while shorter time since last birth and increased parity were associated with statistically significantly reduced endometrial cancer risks. The HR was 3.95 (95%CI; 2.17–7.20; p-trend=<0.0001) for women with ≥25 years since a last birth compared to women having given birth within 4 years. Our findings support that clearance of initiated cells during delivery may be important in endometrial carcinogenesis. Keywords: endometrial carcinoma, parity, registry, reproductive factors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI) and clinicopathological features including overall survival (OS) and disease-free survival (DFS) were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and PIK3CA (104/464). KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05) and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002). Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06) towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35-7.77; p = 0.008) and OS (HR = 2.00; 95% CI 1.09-3.65; p = 0.025) and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05-0.97; p = 0.045). In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies.