986 resultados para emergent properties


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Few real software systems are built completely from scratch nowadays. Instead, systems are built iteratively and incrementally, while integrating and interacting with components from many other systems. Adaptation, reconfiguration and evolution are normal, ongoing processes throughout the lifecycle of a software system. Nevertheless the platforms, tools and environments we use to develop software are still largely based on an outmoded model that presupposes that software systems are closed and will not significantly evolve after deployment. We claim that in order to enable effective and graceful evolution of modern software systems, we must make these systems more amenable to change by (i) providing explicit, first-class models of software artifacts, change, and history at the level of the platform, (ii) continuously analysing static and dynamic evolution to track emergent properties, and (iii) closing the gap between the domain model and the developers' view of the evolving system. We outline our vision of dynamic, evolving software systems and identify the research challenges to realizing this vision.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. RESULTS HERE, WE USE AN ASSAY THAT ALLOWS TO BIOCHEMICALLY PURIFY EXTENDING PROTRUSIONS OF CELLS MIGRATING IN RESPONSE TO THREE PROTOTYPICAL RECEPTORS: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. CONCLUSIONS The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The understanding of the structure and dynamics of the intricate network of connections among people that consumes products through Internet appears as an extremely useful asset in order to study emergent properties related to social behavior. This knowledge could be useful, for example, to improve the performance of personal recommendation algorithms. In this contribution, we analyzed five-year records of movie-rating transactions provided by Netflix, a movie rental platform where users rate movies from an online catalog. This dataset can be studied as a bipartite user-item network whose structure evolves in time. Even though several topological properties from subsets of this bipartite network have been reported with a model that combines random and preferential attachment mechanisms [Beguerisse Díaz et al., 2010], there are still many aspects worth to be explored, as they are connected to relevant phenomena underlying the evolution of the network. In this work, we test the hypothesis that bursty human behavior is essential in order to describe how a bipartite user-item network evolves in time. To that end, we propose a novel model that combines, for user nodes, a network growth prescription based on a preferential attachment mechanism acting not only in the topological domain (i.e. based on node degrees) but also in time domain. In the case of items, the model mixes degree preferential attachment and random selection. With these ingredients, the model is not only able to reproduce the asymptotic degree distribution, but also shows an excellent agreement with the Netflix data in several time-dependent topological properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex systems techniques provide a powerful tool to study the emergent properties of networks of interacting genes. In this study we extract models of genetic regulatory networks from an artificial genome, represented by a sequence of nucleotides, and analyse how variations in the connectivity and degree of inhibition of the extracted networks affects the resulting classes of behaviours. For low connectivity systems were found to be very stable. Only with higher connectivity was a significant occurrence of chaos found. Most interestingly, the peak in occurrence of chaos occurs perched on the edge of a phase transition in the occurrence of attractors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multi-agent systems are complex systems comprised of multiple intelligent agents that act either independently or in cooperation with one another. Agent-based modelling is a method for studying complex systems like economies, societies, ecologies etc. Due to their complexity, very often mathematical analysis is limited in its ability to analyse such systems. In this case, agent-based modelling offers a practical, constructive method of analysis. The objective of this book is to shed light on some emergent properties of multi-agent systems. The authors focus their investigation on the effect of knowledge exchange on the convergence of complex, multi-agent systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work examines atiku-euiash (caribou meat) sharing practices in Sheshatshiu, Newfoundland and Labrador, and aims to elucidate an overarching question: how do sharing practices participate in the co-constitution of the Innu ‘social’? The ‘social’ is understood in this work as a descriptor that refers to the emergent properties of the Innu collective. The thesis is that sharing practices participate in the co-constitution of the Innu social and enact its boundaries. Inside these boundaries, atiku-euiash is more than simply a food resource: by realizing Innu values of generosity, respect and autonomy, sharing implicates the associations of human, animal, and animal masters that constitute the Innu world. Sharing is connected with the enskilment of the younger generations by their el-ders, and thus with the reproduction of Innu values through time. The ways of sharing are relevant because changes in such practices affect the constitution of the Innu social. Giv-en Euro-Canadian colonization, the Innu are in a fraught social space in which sharing is interrupted by colonization practices and values. Understanding sharing is necessary to develop policies that do not interrupt the reproduction of the Innu world This work uses several research methods: participant observation, sharing surveys, and interviews. It also uses network analysis as sharing practices leave traces of giving and receiving actions and these traces can be represented as a network of givers, receivers and circulating caribou meat. There are two main ways in which caribou is hunted and shared: household-based hunts and community-based hunts. The household-based hunts are organized by the hunters themselves, who are able and willing to hunt. Community-based hunts are completely organized and funded by the SIFN or the Innu Nation. In or-der to understand the differences in the distribution of the two hunt types, the categories of centrality and clustering are used to show how the flow of atiku-eiuash and its associ-ated realization of values and enskilment correlate with different degrees of centralization inside the sharing clusters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last two decades have seen a proliferation of research frameworks that emphasise the importance of understanding adaptive processes that happen at different levels. We contribute to this growing body of literature by exploring how cultural (mal)adaptive dynamics relate to multilevel social-ecological processes occurring at different scales, where the lower levels combine into new units with new organizations, functions, and emergent properties or collective behaviors. After a brief review of the concept of “cultural adaptation” from the perspective of cultural evolutionary theory, the core of the paper is constructed around the exploration of multilevel processes occurring at the temporal, spatial, social, and political scales. We do so by using insights from cultural evolutionary theory and by examining small-scale societies as case studies. In each section, we discuss the importance of the selected scale for understanding cultural adaptation and then present an example that illustrates how multilevel processes in the selected scale help explain observed patterns in the cultural adaptive process. The last section of the paper discusses the potential of modeling and computer simulation for studying multilevel processes in cultural adaptation. We conclude by highlighting how elements from cultural evolutionary theory might enrich the multilevel process discussion in resilience theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La connectomique est l’étude des cartes de connectivité du cerveau (animal ou humain), qu’on nomme connectomes. À l’aide des outils développés par la science des réseaux complexes, la connectomique tente de décrire la complexité fonctionnelle et structurelle du cerveau. L’organisation des connexions du connectome, particulièrement la hiérarchie sous-jacente, joue un rôle majeur. Jusqu’à présent, les modèles hiérarchiques utilisés en connectomique sont pauvres en propriétés émergentes et présentent des structures régulières. Or, la complexité et la richesse hiérarchique du connectome et de réseaux réels ne sont pas saisies par ces modèles. Nous introduisons un nouveau modèle de croissance de réseaux hiérarchiques basé sur l’attachement préférentiel (HPA - Hierarchical preferential attachment). La calibration du modèle sur les propriétés structurelles de réseaux hiérarchiques réels permet de reproduire plusieurs propriétés émergentes telles que la navigabilité, la fractalité et l’agrégation. Le modèle permet entre autres de contrôler la structure hiérarchique et apporte un support supplémentaire quant à l’influence de la structure sur les propriétés émergentes. Puisque le cerveau est continuellement en activité, nous nous intéressons également aux propriétés dynamiques sur des structures hiérarchiques produites par HPA. L’existence d’états dynamiques d’activité soutenue, analogues à l’état minimal de l’activité cérébrale, est étudiée en imposant une dynamique neuronale binaire. Bien que l’organisation hiérarchique favorise la présence d’un état d’activité minimal, l’activité persistante émerge du contrôle de la propagation par la structure du réseau.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to analyse the possibilities of improving grid stability on island systems by local demand response mechanisms,a multi-agent simulation model is presented. To support the primary reserve, an under-frequency load shedding (UFLS)using refrigerator loads is modelled. The model represents the system at multiple scales, by recreating each refrigerator individually, and coupling the whole population of refrigerators to a model which simulates the frequency response of the energy system, allowing for cross-scale interactions. Using a simple UFLS strategy, emergent phenomena appear in the simulation. Synchronisation e ects among the individual loads were discovered, which can have strong, undesirable impacts on the system such as oscillations of loads and frequency. The phase transition from a stable to an oscillating system is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Empirical studies have shown that, in real ecosystems, species-interaction strengths are generally skewed in their distribution towards weak interactions. Some theoretical work also suggests that weak interactions, especially in omnivorous links, are important for the local stability of a community at equilibrium. However, the majority of theoretical studies use uniform distributions of interaction strengths to generate artificial communities for study. We investigate the effects of the underlying interaction-strength distribution upon the return time, permanence and feasibility of simple Lotka-Volterra equilibrium communities. We show that a skew towards weak interactions promotes local and global stability only when omnivory is present. It is found that skewed interaction strengths are an emergent property of stable omnivorous communities, and that this skew towards weak interactions creates a dynamic constraint maintaining omnivory. Omnivory is more likely to occur when omnivorous interactions are skewed towards weak interactions. However, a skew towards weak interactions increases the return time to equilibrium, delays the recovery of ecosystems and hence decreases the stability of a community. When no skew is imposed, the set of stable omnivorous communities shows an emergent distribution of skewed interaction strengths. Our results apply to both local and global concepts of stability and are robust to the definition of a feasible community. These results are discussed in the light of empirical data and other theoretical studies, in conjunction with their broader implications for community assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the first academically rigorous interrogation of the generation of performance within the global frame of the motion capture volume, this research presents a historical contextualisation and develops and tests a set of first principles through an original series of theoretically informed, practical exercises to guide those working in the emergent space of performance capture. It contributes a new understanding of the framing of performance in The Omniscient Frame, and initiates and positions performance capture as a new and distinct interdisciplinary discourse in the fields of theatre, animation, performance studies and film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High temperature superconductivity in the cuprates remains one of the most widely investigated, constantly surprising and poorly understood phenomena in physics. Here, we describe briefly a new phenomenological theory inspired by the celebrated description of superconductivity due to Ginzburg and Landau and believed to describe its essence. This posits a free energy functional for the superconductor in terms of a complex order parameter characterizing it. We propose that there is, for superconducting cuprates, a similar functional of the complex, in plane, nearest neighbor spin singlet bond (or Cooper) pair amplitude psi(ij). Further, we suggest that a crucial part of it is a (short range) positive interaction between nearest neighbor bond pairs, of strength J'. Such an interaction leads to nonzero long wavelength phase stiffness or superconductive long range order, with the observed d-wave symmetry, below a temperature T-c similar to zJ' where z is the number of nearest neighbors; d-wave superconductivity is thus an emergent, collective consequence. Using the functional, we calculate a large range of properties, e. g., the pseudogap transition temperature T* as a function of hole doping x, the transition curve T-c(x), the superfluid stiffness rho(s)(x, T), the specific heat (without and with a magnetic field) due to the fluctuating pair degrees of freedom and the zero temperature vortex structure. We find remarkable agreement with experiment. We also calculate the self-energy of electrons hopping on the square cuprate lattice and coupled to electrons of nearly opposite momenta via inevitable long wavelength Cooper pair fluctuations formed of these electrons. The ensuing results for electron spectral density are successfully compared with recent experimental results for angle resolved photo emission spectroscopy (ARPES), and comprehensively explain strange features such as temperature dependent Fermi arcs above T-c and the ``bending'' of the superconducting gap below T-c.