983 resultados para element solutions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the finite element modelling of structural frames, external loads such as wind loads, dead loads and imposed loads usually act along the elements rather than at the nodes only. Conventionally, when an element is subjected to these general transverse element loads, they are usually converted to nodal forces acting at the ends of the elements by either lumping or consistent load approaches. In addition, it is especially important for an element subjected to the first- and second-order elastic behaviour, to which the steel structure is critically prone to; in particular the thin-walled steel structures, when the stocky element section may be generally critical to the inelastic behaviour. In this sense, the accurate first- and second-order elastic displacement solutions of element load effect along an element is vitally crucial, but cannot be simulated using neither numerical nodal nor consistent load methods alone, as long as no equilibrium condition is enforced in the finite element formulation, which can inevitably impair the structural safety of the steel structure particularly. It can be therefore regarded as a unique element load method to account for the element load nonlinearly. If accurate displacement solution is targeted for simulating the first- and second-order elastic behaviour on an element on the basis of sophisticated non-linear element stiffness formulation, the numerous prescribed stiffness matrices must indispensably be used for the plethora of specific transverse element loading patterns encountered. In order to circumvent this shortcoming, the present paper proposes a numerical technique to include the transverse element loading in the non-linear stiffness formulation without numerous prescribed stiffness matrices, and which is able to predict structural responses involving the effect of first-order element loads as well as the second-order coupling effect between the transverse load and axial force in the element. This paper shows that the principle of superposition can be applied to derive the generalized stiffness formulation for element load effect, so that the form of the stiffness matrix remains unchanged with respect to the specific loading patterns, but with only the magnitude of the loading (element load coefficients) being needed to be adjusted in the stiffness formulation, and subsequently the non-linear effect on element loadings can be commensurate by updating the magnitude of element load coefficients through the non-linear solution procedures. In principle, the element loading distribution is converted into a single loading magnitude at mid-span in order to provide the initial perturbation for triggering the member bowing effect due to its transverse element loads. This approach in turn sacrifices the effect of element loading distribution except at mid-span. Therefore, it can be foreseen that the load-deflection behaviour may not be as accurate as those at mid-span, but its discrepancy is still trivial as proved. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. Moreover, another significance of this paper is placed on shifting the nodal response (system analysis) to both nodal and element response (sophisticated element formulation). For the conventional finite element method, such as the cubic element, all accurate solutions can be only found at node. It means no accurate and reliable structural safety can be ensured within an element, and as a result, it hinders the engineering applications. The results of the paper are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple frames.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite element analysis of laminated shells of revolution reinforced with laminated stifieners is described here-in. A doubly curved quadrilateral laminated anisotropic shell of revolution finite element of 48 d.o.f. is used in conjunction with two stiffener elements of 16 d.o.f. namely: (i) A laminated anisotropic parallel circle stiffener element (PCSE); (ii) A laminated anisotropic meridional stiffener element (MSE). These stifiener elements are formulated under line member assumptions as degenerate cases of the quadrilateral shell element to achieve compatibility all along the shell-stifiener junction lines. The solutions to the problem of a stiffened cantilever cylindrical shell are used to check the correctness of the present program while it's capability is shown through the prediction of the behavior of an eccentrically stiffened laminated hyperboloidal shell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite element analysis of thin-walled open-section laminated anisotropic beams is presented herein. A two-noded, 8 degrees of freedom per node thin-walled open-section laminated anisotropic beam finite element has been developed and used. The displacements of the element reference axes are expressed in terms of one-dimensional first order Hermite interpolation polynomials and line member assumptions are invoked in the formulation of the stiffness matrix. The problems of: 1. (a) an isotropic material Z section straight cantilever beam, and 2. (b) a single-layer (0°) composite Z section straight cantilever beam, for which continuum solutions (exact/approximate) are possible, have been solved in order to evaluate the performance of the finite element. Its applicability has been shown by solving the following problems: 3. (c) a two-layer (45°/−45°) composite Z section straight cantilever beam, 4. (d) a three-layer (0°/45°/0°) composite Z section straight cantilever beam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The details of development of the stiffness matrix of a laminated anisotropic curved beam finite element are reported. It is a 16 dof element which makes use of 1-D first order Hermite interpolation polynomials for expressing it's assumed displacement state. The performance of the element is evaluated considering various examples for which analytical or other solutions are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a sequel to the work published by the first and third authors[l] on stiffened laminated shells of revolution made of unimodular materials (materials having identical properties in tension and compression). A finite element analysis of laminated bimodulus composite thin shells of revolution, reinforced by laminated bimodulus composite stiffeners is reported herein. A 48 dot doubly curved quadrilateral laminated anisotropic shell of revolution finite element and it's two compatible 16 dof stiffener finite elements namely: (i) a laminated anisotropic parallel circle stiffener element (PCSE) and (ii) a laminated anisotropic meridional stiffener element (MSE) have been used iteratively. The constitutive relationship of each layer is assumed to depend on whether the fiberdirection strain is tensile or compressive. The true state of strain or stress is realized when the locations of the neutral surfaces in the shell and the stiffeners remain unaltered (to a specified accuracy) between two successive iterations. The solutions for static loading of a stiffened plate, a stiffened cylindrical shell. and a stiffened spherical shell, all made of bimodulus composite materials, have been presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Curved hollow bars of laminated anisotropic construction are used as structural members in many industries. They are used in order to save weight without loss of stiffness in comparison with solid sections. In this paper are presented the details of the development of the stiffness matrices of laminated anisotropic curved hollow bars under line member assumptions for two typical sections, circular and square. They are 16dof elements which make use of one-dimensional first-order Hermite interpolation polynomials for the description of assumed displacement state. Problems for which analytical or other solutions are available are first solved using these elements. Good agreement was found between the results. In order to show the capability of the element, application is made to carbon fibre reinforced plastic layered anisotropic curved hollow bars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a uniform flow of any nature is interrupted, the readjustment of the flow results in concentrations and rare-factions, so that the peak value of the flow parameter will be higher than that which an elementary computation would suggest. When stress flow in a structure is interrupted, there are stress concentrations. These are generally localized and often large, in relation to the values indicated by simple equilibrium calculations. With the advent of the industrial revolution, dynamic and repeated loading of materials had become commonplace in engine parts and fast moving vehicles of locomotion. This led to serious fatigue failures arising from stress concentrations. Also, many metal forming processes, fabrication techniques and weak-link type safety systems benefit substantially from the intelligent use or avoidance, as appropriate, of stress concentrations. As a result, in the last 80 years, the study and and evaluation of stress concentrations has been a primary objective in the study of solid mechanics. Exact mathematical analysis of stress concentrations in finite bodies presents considerable difficulty for all but a few problems of infinite fields, concentric annuli and the like, treated under the presumption of small deformation, linear elasticity. A whole series of techniques have been developed to deal with different classes of shapes and domains, causes and sources of concentration, material behaviour, phenomenological formulation, etc. These include real and complex functions, conformal mapping, transform techniques, integral equations, finite differences and relaxation, and, more recently, the finite element methods. With the advent of large high speed computers, development of finite element concepts and a good understanding of functional analysis, it is now, in principle, possible to obtain with economy satisfactory solutions to a whole range of concentration problems by intelligently combining theory and computer application. An example is the hybridization of continuum concepts with computer based finite element formulations. This new situation also makes possible a more direct approach to the problem of design which is the primary purpose of most engineering analyses. The trend would appear to be clear: the computer will shape the theory, analysis and design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Past studies that have compared LBB stable discontinuous- and continuous-pressure finite element formulations on a variety of problems have concluded that both methods yield Solutions of comparable accuracy, and that the choice of interpolation is dictated by which of the two is more efficient. In this work, we show that using discontinuous-pressure interpolations can yield inaccurate solutions at large times on a class of transient problems, while the continuous-pressure formulation yields solutions that are in good agreement with the analytical Solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let Ohm be a bounded domain in IRN, N greater than or equal to 2, lambda > 0, q is an element of (0, N - 1) and alpha is an element of (1, N/N-1 In this article we show the existence of at least two positive solutions for the following quasilinear elliptic problem with an exponential type nonlinearity:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report contains the details of the development of the stiffness matrix for a rectangular laminated anisotropic shallow thin shell finite element. The derivation is done under linear thin shell assumptions. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first-order Hermite interpolation polynomials, it is possible to insure that the displacement state for the assembled set of such elements, to be geometrically admissible. Monotonic convergence of the total potential energy is therefore possible as the modelling is successively refined. The element is systematically evaluated for its performance considering various examples for which analytical or other solutions are available

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.