830 resultados para electrolytes fractional excretion
Resumo:
To evaluate tenofovir-related nephropathy, we quantified calculated glomerular filtration rates (GFR) and renal tubular function in 46 tenofovir-treated patients and 25 without tenofovir. We also analysed patients who stopped tenofovir for drug-related nephrotoxicity at our clinic. Tenofovir use combined with non-nucleoside reverse transcriptase inhibitors, but not with protease inhibitors, resulted in a significant increase in calculated GFR. Tenofovir use was associated with significantly lower phosphatemia and a marginally increased fractional excretion of uric acid, but no other signs of tubulopathy.
Resumo:
Disturbances in electrolyte homeostasis are a frequent adverse side-effect of the administration of aminoglycoside antibiotics such as gentamicin, and the antineoplastic agent cis-platinum. The aims of this work were to further elucidate the site(s) and mechanism(s) by which these drugs may produce disturbances in the renal reabsorption of calcium and magnesium. These investigations were undertaken using a range of in vivo and in vitro techniques and models. Initially, a series of in vivo studies was conducted to delineate aspects of the acute and chronic effects of both drugs on renal electrolyte handling and to select and evaluate an appropriate animal model: subsequent investigations were focused on gentamicin. In a study of the acute and chronic effects of cis-platinum administration, there were pronounced acute changes in a variety of indices of nephrotoxic injury, including electrolyte excretion. Most effects resolved but there were chronic increases in the urinary excretion of calcium and magnesium. The renal response of three strains of rat (Fischer 344, Sprague-Dawley (SD), and Wistar) to a ranges of doses of gentamicin was also investigated. Drug administration produced substantially different responses between strains, in particular marked differences in calcium and magnesium excretion. The results suggested that the SD rat was an appropriately sensitive strain for use in further investigations. Acute infusion of gentamicin in the anaesthetised SD rat produced rapid, substantial increases in the fractional excretion of calcium and magnesium, while sodium and potassium output were unaffected, confirming previous results of similar experiments using F344 rats. Studies using lithium clearance measurements in the anaesthetised SD rat were undertaken to investigate the effects of gentamicin on proximal tubular calcium reabsorption. Lithium clearance was unaffected by acute gentamicin infusion, suggesting that the site of acute gentamicin-induced hypercalciuria may not be located in the proximal tubule. Inhibition of Ca2+ ATPase activity was investigated as a potential mechanism by which calcium reabsorption could be affected after aminoglycoside administration. In vitro, both Ca2+ ATPase and Na+/K+ ATPase activity could be similarly inhibited by the presence of aminoglycosides, in a dose-related manner. Whilst inhibition of Na+/K+ ATPase could be demonstrated biochemically after in vivo administration of gentamicin, there were no concurrent effects on Ca2+ ATPase activity, suggesting that inhibition of Ca2+ ATPase activity is unlikely to be a primary mechanism of aminoglycoside-induced reductions of calcium reabsorption. Histochemical studies could not discern inhibition of either Na+/K+ ATPase or Ca2+ ATPase activity after in vivo administration of gentamicin. Selection of renal cell lines for further investigative in vitro studies on the mechanisms of altered cation reabsorption was considered using MTT (3-(4,5,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Neutral Red cytotoxicity assays. The ability of LLC-PK1 and LLC-RK1 cell lines to correctly rank a series of nephrotoxic compounds with their known nephrotoxic potency in vivo was studied. Using these cell lines grown on semi-permeable inserts, alterations in the paracellular transport of 45Ca was investigated as a possible mechanism by which gentamicin could alter calcium reabsorption in vivo. Short term exposure (I h) of LLC-RK1 cells to gentamicin, via both cell surfaces, resulted in a reduction in paracellular permeability to both transepithelial 3H-mannitol and 45Ca fluxes. When LLC-RK1 cells were exposed via the apical surface only, similar dose-related reductions were seen to those observed when cells were exposed to the drug from both sides. Short-term basal exposure to gentamicin appeared to contribute less to the observed reductions in 3H-mannitol and 45Ca fluxes. Experiments investigating transepithelial movement of 45Ca and 3H-mannitol on LLC-PK1 cells after acute gentamicin exposure were inconclusive. Longer exposure (48 h) to gentamicin caused an increase in the permeability of the monolayer and a consequent increase in transepithelial 45Ca flux in the LLC-RK1 cell line; increases in permeability of LLC-PK1 cells to 45Ca and 3H-mannitol were not apparent under the same conditions. The site and mechanism at which gentamicin, in particular, alters calcium reabsorption cannot be definitively described from these studies. However, indirect evidence from lithium clearance studies suggests that the site of the lesion is unlikely to be located in the proximal tubule. The mechanism by which gentamicin exposure alters calcium reabsorption may be by reducing paracellular permeability to calcium rather than by altering active calcium transport processes.
Resumo:
BACKGROUND Acute kidney injury (AKI) is common in dogs. Few studies have assessed sequential changes in indices of kidney function in dogs with naturally occurring AKI. OBJECTIVE To document sequential changes of conventional indices of renal function, to better define the course of AKI, and to identify a candidate marker for recovery. ANIMALS Ten dogs with AKI. METHODS Dogs were prospectively enrolled and divided into surviving and nonsurviving dogs. Urine production was measured with a closed system for 7 days. One and 24-hour urinary clearances were performed daily to estimate solute excretion and glomerular filtration rate (GFR). Solute excretion was calculated as an excretion ratio (ER) and fractional clearance (FC) based on both the 1- and 24-hour urine collections. RESULTS Four dogs survived and 6 died. At presentation, GFR was not significantly different between the outcome groups, but significantly (P = .03) increased over time in the surviving, but not in the nonsurviving dogs. Fractional clearance of Na decreased significantly over time (20.2-9.4%, P < .0001) in the surviving, but not in the nonsurviving dogs. The ER and FC of solutes were highly correlated (r, 0.70-0.95). CONCLUSION AND CLINICAL IMPACT Excretion ratio might be used in the clinical setting as a surrogate marker to follow trends in solute excretion. Increased GFR, urine production, and decreased FC of Na were markers of renal recovery. The FC of Na is a simple, noninvasive, and cost-effective method that can be used to evaluate recovery of renal function.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
In recent years, significant research in the field of electrochemistry was developed. The performance of electrical devices, depending on the processes of the electrolytes, was described and the physical origin of each parameter was established. However, the influence of the irregularity of the electrodes was not a subject of study and only recently this problem became relevant in the viewpoint of fractional calculus. This paper describes an electrolytic process in the perspective of fractional order capacitors. In this line of thought, are developed several experiments for measuring the electrical impedance of the devices. The results are analyzed through the frequency response, revealing capacitances of fractional order that can constitute an alternative to the classical integer order elements. Fractional order electric circuits are used to model and study the performance of the electrolyte processes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The urinary excretion, renal clearance, and tubular reabsorption of zinc were investigated in 30 adult healthy subjects under basal conditions and during the zinc and glucose tolerance tests. After a 12h overnight fast, each subject was submitted to renal clearance of zinc. The procedures were performed between 8.00 and 12.00 a.m., after emptying the bladder and ingestion of 4 ml deionized water/kg body weight at 8.00 a.m. The first urine sample was collected at 10.00 a.m., and the second at 12.00 a.m. A dose of 110 mg ZnSO4.7H(2)O was administered orally to each subject, diluted in 20 mi deionized water, at time 0 min. Blood samples were collected from an antecubital vein at times -30, 0, and 30 min and at 30 min intervals up to 240 min. Glucose was administered intravenously (0.5 ml 50%/kg body weight) during the first 3 min of the test, and blood samples were collected from an unconstricted, contralateral, antecubital vein at times -30, 0, 3, 5, 10, 20, 30, 45, 60, and 90 min. The results showed that urinary zinc excretion, and renal zinc clearance were significantly higher during the zinc and glucose tolerance tests than in the control condition. on the other hand, renal zinc clearance was more elevated during the glucose tolerance test than during the zinc tolerance test. Variations in zinc tubular reabsorption and glomerular filtration rate were not detected. The results suggest that urinary excretion and renal clearance of zinc in healthy subjects increase during acute zinc ingestion and glucose infusion. Although zinc ingestion raised urinary zinc excretion, glucose infusion was more effective in increasing renal zinc clearance. These normal parameters are important in the investigation of diabetic patients with serum and urine zinc changes.
Resumo:
Maternal undernutrition affects the foetal development, promoting renal alterations and adult hypertension. The present study investigates, in adult male rats, the effect of food restriction in utero on arterial blood pressure changes (AP), and its possible association with the number of nephrons, renal function and angiotensin II (AT1R/AT2R), glucocorticoid (GR) and mineralocorticoid (MCR) receptors expression. The daily food supply to pregnant rats was measured and one group (n=5) received normal quantity of food (NF) while the other group received 50% of that (FR50) (n=5). The AP was measured weekly. At 16 weeks of life, fractionator’s method was used to estimate glomeruli number in histological slices. The renal function was estimate by creatinine and lithium clearances. Blood and urine samples were collected to biochemical determination of creatinine, sodium, potassium and lithium. At 90th and 23rd days of life, kidneys were also processed to AT1R, AT2R, GR and MCR immunolocalization and for western blotting analysis. FR50 offspring shows a significant reduction in BW (FR50: 5.67 ± 0.16 vs. 6.84 ± 0.13g in NF, P<0.001) and increased AP from 6th to 12nd week (6thwk FR50: 149.1 ± 3.4 vs. 125.1 ± 3.2mmHg in NF, P<0.001and, 12ndwk FR50: 164.4 ± 4.9 vs. 144.0 ± 3.3 mmHg in NF, P=0.02). Expression of AT1R and AT2R were significantly decreased in FR50 (AT1, 59080 ± 2709 vs. 77000 ± 3591 in NF, P=0.05; AT2, 27500 ± 95.50 vs. 67870 ± 1509 in NF, P=0.001) while the expression of GR increased in FR50 (36090 ± 781.5 vs. 4446 ± 364.5 in NF, P=0.0007). The expression of MCR did not change significantly. We also verified a pronounced decrease in fractional urinary sodium excretion in FR50 offspring (0.03 ± 0.02 vs. 0.06 ± 0.04 in NF, p=0.03). This occurred despite unchanged creatinine clearance. The study led us to suggest that fetal undernutrition, with increased fetal exposure... (Complete abstract click electronic access below)
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.