971 resultados para electrochemical studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behavior of polystyrene modified with gold nanoparticle (Au NPs) was investigated in terms of pH-responsive polymer brush. A pH-responsive of modified polymer brush from tethered polystyrene was prepared and used for selective gating transport of anions andcations across the thin-film. An ITO-coated glass electrode was used as substrate and applied to study the switchable permeability of the polymer brush triggered by changes in pH of the aqueous environment. The pH-sensitive behavior of the polymer brush interface has been demonstrated by means of cyclic voltammetry (CV) and Localized Surface Plasmon Resonance (LSPR). CV experiments showed at ph values of 4 and 8 induces swelling and shrinking of the grafted polymer brushes, respectively, and this behavior is fast and reversible. LSPR measurements showed a blue shift of 33 nm in the surface resonance band changes by local pH. The paper brings an easy methodology to fabrication a variety of nanosensors based on the polymer brushes-nanoparticle assemblies. © 2013 by ESG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behaviour of Cu, Cu-Al and Cu-Al-Ag alloys in aqueous solutions of NaCl (0.5 M, pH = 3.00) was studied by means of voltammetric methods and electrochemical impedance spectroscopy. The surfaces were examined by SEM and EDX analysis. Cu-Al-Ag alloy shows a potentiodynamic behaviour similar to that of the pure copper electrode while the Cu-Al alloy presents some minor differences. In the active dissolution region the electrodes suffer pitting corrosion and in the other potential regions there are the formation of a passivant film with composition depending on the potential. The impedance responses of the electrodes are discussed. An electrodissolution mechanism is proposed and the effect of the alloying elements upon the impedance response and polarisation curves is explained. The main effects are due to the production of copper and silver chlorides and aluminium oxides/ hydroxides at the corroding interface. The addition of Al or (Al + Ag) increases the corrosion resistance of pure copper. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an efficient alternative to obtain recessed microelectrodes device on gold electrode surface, in which mixed self-assembled monolayer of long and short carbon alkanethiol chains was used for this purpose. Development of the modified electrodes included the chemical adsorption of 11-mercaptoundecanoic acid and 2-mercaptoethanol solution, as well as their mixtures, on gold surface, resulting in the final mixed self-assembled monolayer configuration. For comparison, the electrochemical performance of self-assembled monolayer of 11-mercaptoundecanoic acid. 3-mercaptopropionic acid, 4-mercapto-1-butanol and 6-mercapto-1-hexanol modified electrodes was also investigated. It was verified that, in the mixed self-assembled monolayer, the 11-mercaptoundecanoic acid acts as a barrier for electron transfer while the short alkanethiol chair is deposited in an island-like shape through which electrons can be freely transferred to ions in solution, allowing electrochemical reactions to occur. The performance of the modified electrodes toward microelectrode behavior was investigated via cyclic voltammetry and electrochemical impedance spectroscopy measurements using [Fe(CN)(6)](3-/4-) redox couple as a probe. In this case, sigmoidal voltammetric responses were obtained, very similar to those observed for microelectrodes. Such behavior reinforces the proposition of electron transfer through the short alkanethiol chain layer and surface blockage by the long chain one. Electrochemical impedance results allowed calculated the mean radius value of each microelectrode disks of 3.8 mu m with about 22 mu m interval between them. The microelectrode environment provided by the mixed self-assembled monolayer can be conveniently used to provide an efficient catalytic conversion in biosensing applications. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three new cationic amphiphiles bearing anthraquinone moieties at the polar headgroup region were synthesized, The single-chain amphiphile, N,N-dimethyl-N-octadecyl-N-(9,10-dihydro dioxoanthracen-2-ylmethyl)ammonium bromide 1, in the presence of cetyltrimethylammonium bromide upon dispersion in water gave co-micellar aggregates containing covalently attached anthraquinone residues at the polar aqueous interfaces. The other two double-chain amphiphiles, N,N-dioctadecyl-N-methyl-N-(9,10-dihydro-9,10-dioxoanthracen-2-ylmethyl)ammonium bromide 2 and N,N-dimethyl-N-(1,2-bispalmitoyloxypropanyl)-N-(9,10-dihydro-9,10-dioxanthracen-2-ylmethyl)ammonium bromide 3, however, on dispersion in aqueous media produced vesicular aggregates. The critical temperatures for the gel to liquid-crystalline-like phase transition processes for the vesicular systems were determined by following temperature-dependent changes in the ratios of keto-enol tautomeric forms of benzoylacetanilide doped within respective. vesicular assemblies. The redox chemistry of the these supramolecular assemblies was also studied by following the time-dependent changes in the ITV-VIS absorption spectroscopy in the presence of exogenous reducing or oxidizing agents, Electrochemical studies using glassy carbon electrodes reveal that redox-active amphiphiles adsorb on to the glassy carbon surfaces to form electroactive deposits when dipped into aqueous suspensions of either of these aggregates irrespective of the micellar or vesicular nature of the dispersions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP) based molecular semiconductors have emerged as promising materials for high performance active layers in organic solar cells. It is imperative to comprehend the origin of such a property by investigating the fundamental structure property correlation. In this report we have investigated the role of the donor group in DPP based donor-acceptor- donor (D-A-D) structure to govern the solid state, photophysical and electrochemical properties. We have prepared three derivatives of DPP with varying strengths of the donor groups, such as phenyl (PDPP-Hex), thiophene (TDPP-Hex) and selenophene (SeDPP-Hex). The influence of the donor units on the solid state packing was studied by single crystal X-ray diffraction. The photophysical, electrochemical and density functional theory ( DFT) results were combined to elucidate the structural and electronic properties of three DPP derivatives. We found that these DPP derivatives crystallized in the monoclinic space group P21/c and show herringbone packing in the crystal lattice. The derivatives exhibit weak p-p stacking interactions as two neighboring molecules slip away from each other with varied torsional angles at the donor units. The high torsional angle of 32 degrees ( PDPP-Hex) between the phenyl and lactam ring results in weak intramolecular interactions between the donor and acceptor, while TDPP-Hex and SeDPP-Hex show lower torsional angles of 9 degrees and 12 degrees with a strong overlap between the donor and acceptor units. The photophysical properties reveal that PDPP-Hex exhibits a high Stokes shift of 0.32 eV and SeDPP- Hex shows a high molar absorption co-efficient of 33 600 L mol -1 1 cm -1 1 with a low band gap of similar to 2.2 eV. The electrochemical studies of SeDPP- Hex indicate the pronounced effect of selenium in stabilizing the LUMO energy levels and this further emphasizes the importance of chalcogens in developing new n-type organic semiconductors for optoelectronic devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present work, Li2-x MnO3-y (LMO) thin films have been deposited by radio frequency (RF) reactive magnetron sputtering using acid-treated Li2MnO3 powder target. Systematic investigations have been carried out to study the effect of RF power on the physicochemical properties of LMO thin films deposited on platinized silicon substrates. X-ray diffraction, electron microscopy, surface chemical analysis and electrochemical studies were carried out for the LMO films after post deposition annealing treatment at 500 A degrees C for 1 h in air ambience. Galvanostatic charge discharge studies carried out using the LMO thin film electrodes, delivered a highest discharge capacity of 139 mu Ah mu m(-1) cm(-2) in the potential window 2.0-3.5 V vs. Li/Li+ at 100 W RF power and lowest discharge capacity of 80 mu Ah mu m(-1) cm(-2) at 75 W RF power. Thereafter, the physicochemical properties of LMO films deposited using optimized RF power 100 W on stainless steel substrates has been studied in the thickness range of 70 to 300 nm as a case study. From the galvanostatic charge discharge experiments, a stable discharge capacity of 68 mu Ah mu m(-1) cm(-2) was achieved in the potential window 2.0-4.2 V vs. Li/Li+ tested up to 30 cycles. As the thickness increased, the specific discharge capacity started reducing with higher magnitude of capacity fading.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents results concerning structure and electrochemical characteristics of the La0.67Mg0.33 (Ni0.8Co0.1Mn0.1) (x) (x=2.5-5.0) alloy. It can be found from the result of the Rietveld analyses that the structures of the alloys change obviously with increasing x from 2.5 to 5.0. The main phase of the alloys with x=2.5-3.5 is LaMg2Ni9 phase with a PuNi3-type rhombohedral structure, but the main phase of the alloys with x=4.0-5.0 is LaNi(5)phase with a CaCu5-type hexagonal structure. Furthermore, the phase ratio, lattice parameter and cell volume of the LaMg2Ni9 phase and the LaNi5 phase change with increasing x. The electrochemical studies show that the maximum discharge capacity increases from 214.7 mAh/g (x=2.5) to 391.1 mAh/g (x=3.5) and then decreases to 238.5 mAh/g (x=5.0). As the discharge current density is 1,200 mA/g, the high rate dischargeability (HRD) increases from 51.1% (x=2.5) to 83.7% (x=3.5) and then decreases to 71.6% (x=5.0). Moreover, the exchange current density (I-0) of the alloy electrodes first increases and then decrease with increasing x from 2.5 to 5.0, which is consistent with the variation of the HRD. The cell volume reduces with increasing x in the alloys, which is detrimental to hydrogen diffusion and accordingly decreases the low-temperature dischargeability of the alloy electrodes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

X-ray and electrochemical studies of spinel-related manganese chromium oxides, LiCrxMn2-xO4 (0 less-than-or-equal-to x less-than-or-equal-to 1) were carried out in a lithium nonaqueous cell. X-ray diffraction spectra indicated that the substitution of manganese in LiMn2O4 by trivalent transition metals (Cr3+) cause the linear decrease of lattice parameter with the x in the LiCrMn2-xO4. Some discharge-capacity loss was obtained due to the lattice contraction of LiCrMn2-xO4, but it has a better rechargeability than LiMn2O4. Cyclic voltammetry and electrochemical impedance experiments have shown that the excellent rechargeability of LiCrxMn2-xO4 may be attributed to the good reversibility of the change in its crystal structure for the insertion and extraction of lithium ions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The structure of the 1-alkyl-3-methylimidazolium salts of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anion have been investigated using single crystal X-ray crystallography. In addition, EXAFS and electrochemical studies have been performed on the [C(4)mim](+) salt which is formed following the oxidative dissolution of uranium(IV) oxide in [C(4)mim][NO3]. EXAFS analysis of the solution following UO2 dissolution indicates a mixture of uranyl nitrate and mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anions are formed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A microfluidic device designed for electrochemical studies on a microliter scale has been utilized for the examination of impurity levels in ionic liquids (ILs). Halide impurities are common following IL synthesis, and this study demonstrates the ability to quantify low concentrations of halide in a range of ILs to levels of similar to 5 ppm, even in ILs not currently measurable using other methods such as ion chromatography. To validate the mixer device, the electrochemistry of ferrocene was also examined and compared with spectroscopic and bulk electrochemistry measurements. An automated

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The application of electric bias across tip–surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after 12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Four ruthenium(II) complexes with the formula [Ru(eta(5)-C(5)H(5))(PP)L][CF(3)SO(3)], being (PP = two triphenylphosphine molecules), L = 1-benzylimidazole, 1; (PP = two triphenylphosphine molecules), L = 2,2'bipyridine, 2; (PP = two triphenylphosphine molecules), L = 4-Methylpyridine, 3; (PP = 1,2-bis(diphenylphosphine) ethane), L = 4-Methylpyridine, 4, were prepared, in view to evaluate their potentialities as antitumor agents. The compounds were completely characterized by NMR spectroscopy and their crystal and molecular structures were determined by X-ray diffraction. Electrochemical studies were carried out giving for all the compounds quasi-reversible processes. The images obtained by atomic force microscopy (AFM) suggest interaction with pBR322 plasmid DNA. Measurements of the viscosity of solutions of free DNA and DNA incubated with different concentrations of the compounds confirmed this interaction. The cytotoxicity of compounds 1234 was much higher than that of cisplatin against human leukemia cancer cells (HL-60 cells). IC(50) values for all the compounds are in the range of submicromolar amounts. Apoptotic death percentage was also studied resulting similar than that of cisplatin. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.