948 resultados para electrochemical impedance spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of potential on electrochemical behavior of Ti-6Al-7Nb alloy under simulate physiological conditions was investigated by electrochemical impedance spectroscopy (EIS). The experimental results were compared with those obtained by potentiodynamic polarization curves. All measurements were carried out in Hank's aerated solution at 25degreesC, at pH 7.8 and at different potentials (corrosion potential, 0 mV(SCE), 1000 mV(SCE), and 2000 mV(SCE)). The EIS spectra exhibited a two-step or a two-time constant system, suggesting the formation of a two-layer oxide film on the metal surface. The high corrosion resistance, displayed by this alloy in electrochemical polarization tests, is due to the dense inner layer, while its osseointegration ability can be ascribed to the presence of the outer porous layer. (C) 2004 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy measurements using two carbon steel electrodes in soybean biodiesel medium, produced by methylic route, were performed in an electrochemical cell that allows positioning the two electrodes face-to-face. To retain the biodiesel between the electrodes and prevent its leakage a porous membrane soaked in biodiesel was used. The amplitude of the AC potential and the area of the electrodes were varied. The linearity between disturbance and response signals was observed for tests when the amplitude of the AC potential was lower than 1500 mV (rms). The electrical resistance of biodiesel dominates the global response and carbon steel presents low corrosion, which is observed only at low frequency, and was confirmed by chemical tests performed in the membrane. In conclusion the electrical resistance of biodiesel can be estimated using electrochemical impedance spectroscopy with two electrodes set up. ©The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new tri-electrode probe is presented and applied to local electrochemical impedance spectroscopy (LEIS) measurements. As opposed to two-probe systems, the three-probe one allows measurement not only of normal, but also of radial contributions of local current densities to the local impedance values. The results concerning the cases of the blocking electrode and the electrode with faradaic reaction are discussed from the theoretical point of view for a disk electrode. Numerical simulations and experimental results are compared for the case of the ferri/ferrocyanide electrode reaction at the Pt working electrode disk. At the centre of the disk, the impedance taking into account both normal and radial contributions was in good agreement with the local impedance measured in terms of only the normal contribution. At the periphery of the electrode, the impedance taking into account both normal and radial contributions differed significantly from the local impedance measured in terms of only the normal contribution. The radial impedance results at the periphery of the electrode are in good agreement with the usual explanation that the associated larger current density is attributed to the geometry of the electrode, which exhibits a greater accessibility at the electrode edge. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion resistance of Ti and Ti-6Al-4V was investigated through electrochemical impedance spectroscopy, EIS, potentiodynamic polarisation curves and UV-Vis spectrophotometry. The tests were done in Hank solution at 25 degrees C and 37 degrees C. The EIS measurements were done at the open circuit potential at specific immersion times. An increase of the resistance as a function of the immersion time was observed, for Ti (at 25 degrees C and 37 degrees C), and for Ti-6Al-4V (at 25 degrees C), which was interpreted as the formation and growth of a passive film on the metallic surfaces. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactive ultrathin films with the incorporation of amino-terminated G4 PAMAM dendrimers have been prepared via layer-by-layer self-assembly methods on a gold electrode and used for the DNA hybridization analysis. Surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) are used to characterize the successful construction of the multicomponent film on the gold substrate. The dendrimer-modified surfaces improve the immobilization capacity of the probe DNA greatly, compared to the AET (2aminoethanethiol) SAM sensor surfaces without dendrimer molecules. DNA hybridization analysis is monitored by EIS. The dendrimer-based electrochemical impedance DNA biosensor shows high sensitivity and selectivity for DNA hybridization assay. The multicomponent films also display a high stability during repeated regeneration and hybridization cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behaviour of potentiodynamically formed thin anodic films of polycrystalline tin in aqueous sodium bicarbonate solutions (pH approximate to 8.3) were studied using cyclic voltammetry and electrochemical impedance spectroscopy. Different equivalent circuits corresponding to various potential regions were employed to account for the electrochemical processes taking place under each condition. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) is a helpful tool to understand how a battery is behaving and how it degrades. One of the disadvantages is that it is typically an 'off-line' process. This paper investigates an alternative method of looking at impedance spectroscopy of a battery system while it is on-line and operational by manipulating the switching pattern of the dc-dc converter to generate low frequency harmonics in conjunction with the normal high frequency switching pattern to determine impedance in real time. However, this adds extra ripple on the inductor which needs to be included in the design calculations. The paper describes the methodology and presents some experimental results in conjunction with EIS results to illustrate the concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibody was covalently immobilized by amine coupling method to gold surfaces modified with a self-assembled monolayer of thioctic acid. The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that the hexacyanoferrate redox reactions on the gold surface were blocked due to the procedures of self-assembly of thioctic acid and antibody immobilization. The binding of a specific antigen to antibody recognition layer could be detected by measurements of the impedance change. A new amplification strategy was introduced for improving the sensitivity of impedance measurements using biotin labeled protein- streptavidin network complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. This complex can be formed in a cross-linking network of molecules so that the amplification of response signal will be realized due to the big molecular size of complex. The results show that this amplification strategy causes dramatic improvement of the detection sensitivity of hIgG and has good correlation for detection of hIgG in the range of 2-10 mug/ml. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer based carbon aerogels were prepared by synthesis of a resorcinol formaldehyde gel followed by pyrolysis at 1073K under Ar and activation of the resultant carbon under CO2 at different temperatures. The prepared carbon aerogels were used as active materials in the preparation of cathode electrodes for lithium oxygen cells and the electrochemical performance of the cells was evaluated by galvanostatic charge/discharge cycling and electrochemical impedance measurements. It was shown that the storage capacity and discharge voltage of a Li/O2 cell strongly depend on the porous structure of the carbon used in cathode. EIS results also showed that the shape and value of the resistance in the impedance spectrum of a Li/O2 cell are strongly affected by the porosity of carbon used in the cathode. Porosity changes due to the build up of discharge products hinder the oxygen and lithium ion transfer into the electrode, resulting in a gradual increase in the cell impedance with cycling. The discharge capacity and cycle life of the battery decrease significantly as its internal resistance increases with charge/discharge cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquid surface treatments are proposed as a method of controlling corrosion processes on magnesium alloys. An important magnesium alloy, ZE41 (nominally 4% Zn and 1% rare earth), was treated with the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate (P66614DPP). Impedance spectra were acquired at intervals during the treatment, indicating the development of a film and allowing a measure of the film formation process to be obtained over time. Mechanically polished and electro-polished surfaces were prepared; these surfaces, treated and untreated, were subsequently exposed to 0.1 M NaCl aqueous solutions. The corrosion behavior of the prepared surfaces were assessed using impedance spectroscopy and optical microscopy. The results indicated a significant role for the method of surface preparation used and, in both cases, the ionic liquid treatment produced a more corrosion-resistant surface.