925 resultados para electricity portfolio
Resumo:
Least-Cost Planning played a key role in the development of the energy efficiency and renewable energy industries in the USA, It has not been widely used elsewhere, largely due to differences in other nations' regulatory environments and the emergence of competitive markets as the dominant paradigm for electricity planning, Least-Cost Planning, however may over valuable insights for creating regulatory framework for competitive electricity markers. This paper examines some lessons which may be extracted from an analysis of the Least-Cost Planning experience in the USA and suggests how these lessons might prove beneficial in guiding Australia's electricity industry reform, This analysis demonstrates how market-based reforms may be flawed if they ignore the history of previous reform processes.
Resumo:
Frequent references are made to the use of portfolio spread rates in managing financial risks in banks, but indications as to the procedures for determining such rates are very scant.The purpose of this article is to present some initial ideas on the subject: a Standard Funding system indicates what each portfolio should have earned, while an Actual Funding system points out what each portfolio did, in fact, earn; additionally, by comparing the outcomes of the two funding systems for each portfolio, it is possible to determine what each portfolio earned (or lost) in the way of arbitrage.
Resumo:
This paper describes a multi-agent based simulation (MABS) framework to construct an artificial electric power market populated with learning agents. The artificial market, named TEMMAS (The Electricity Market Multi-Agent Simulator), explores the integration of two design constructs: (i) the specification of the environmental physical market properties and (ii) the specification of the decision-making (deliberative) and reactive agents. TEMMAS is materialized in an experimental setup involving distinct power generator companies that operate in the market and search for the trading strategies that best exploit their generating units' resources. The experimental results show a coherent market behavior that emerges from the overall simulated environment.
Resumo:
Num mercado de electricidade competitivo onde existe um ambiente de incerteza, as empresas de geração adoptam estratégias que visam a maximização do lucro, e a minimização do risco. Neste contexto, é de extrema importância para desenvolver uma estratégia adequada de gestão de risco ter em conta as diferentes opções de negociação de energia num mercado liberalizado, de forma a suportar a tomada de decisões na gestão de risco. O presente trabalho apresenta um modelo que avalia a melhor estratégia de um produtor de energia eléctrica que comercializa num mercado competitivo, onde existem dois mercados possíveis para a transacção de energia: o mercado organizado (bolsa) e o mercado de contratos bilaterais. O produtor tenta maximizar seus lucros e minimizar os riscos correspondentes, seleccionando o melhor equilíbrio entre os dois mercados possíveis (bolsa e bilateral). O mercado de contratos bilaterais visa gerir adequadamente os riscos inerentes à operação de mercados no curto prazo (mercado organizado) e dar o vendedor / comprador uma capacidade real de escolher o fornecedor com que quer negociar. O modelo apresentado neste trabalho faz uma caracterização explícita do risco no que diz respeito ao agente de mercado na questão da sua atitude face ao risco, medido pelo Value at Risk (VaR), descrito neste trabalho por Lucro-em-Risco (PAR). O preço e os factores de risco de volume são caracterizados por um valor médio e um desvio padrão, e são modelizados por distribuições normais. Os resultados numéricos são obtidos utilizando a simulação de Monte Carlo implementado em Matlab, e que é aplicado a um produtor que mantém uma carteira diversificada de tecnologias de geração, para um horizonte temporal de um ano. Esta dissertação está organizada da seguinte forma: o capítulo 1, 2 e 3 descrevem o estado-da-arte relacionado com a gestão de risco na comercialização de energia eléctrica. O capítulo 4 descreve o modelo desenvolvido e implementado, onde é também apresentado um estudo de caso com uma aplicação do modelo para avaliar o risco de negociação de um produtor. No capítulo 5 são apresentadas as principais conclusões.
Resumo:
Versão editor: http://www.isegi.unl.pt/docentes/acorreia/documentos/European_Challenge_KM_Innovation_2004.pdf
Resumo:
In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs may turn electricity generation by renewable sources valuable in electricity markets. Information availability and adequate decision-support tools are crucial for achieving VPPs’ goals. This involves information concerning associated producers and market operation. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, focusing mainly in the information requirements for adequate decision making.
Resumo:
A novel hybrid approach, combining wavelet transform, particle swarm optimization, and adaptive-network-based fuzzy inference system, is proposed in this paper for short-term electricity prices forecasting in a competitive market. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Finally, conclusions are duly drawn.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.