972 resultados para electricity generation costs
Resumo:
¿Suministrarán las fuentes de energía renovables toda la energía que el mundo necesita algún día? Algunos argumentan que sí, mientras que otros dicen que no. Sin embargo, en algunas regiones del mundo, la producción de electricidad a través de fuentes de energía renovables ya está en una etapa prometedora de desarrollo en la que su costo de generación de electricidad compite con fuentes de electricidad convencionales, como por ejemplo la paridad de red. Este logro ha sido respaldado por el aumento de la eficiencia de la tecnología, la reducción de los costos de producción y, sobre todo, los años de intervenciones políticas de apoyo financiero. La difusión de los sistemas solares fotovoltaicos (PV) en Alemania es un ejemplo relevante. Alemania no sólo es el país líder en términos de capacidad instalada de sistemas fotovoltaicos (PV) en todo el mundo, sino también uno de los países pioneros donde la paridad de red se ha logrado recientemente. No obstante, podría haber una nube en el horizonte. La tasa de difusión ha comenzado a declinar en muchas regiones. Además, las empresas solares locales – que se sabe son importantes impulsores de la difusión – han comenzado a enfrentar dificultades para manejar sus negocios. Estos acontecimientos plantean algunas preguntas importantes: ¿Es ésta una disminución temporal en la difusión? ¿Los adoptantes continuarán instalando sistemas fotovoltaicos? ¿Qué pasa con los modelos de negocio de las empresas solares locales? Con base en el caso de los sistemas fotovoltaicos en Alemania a través de un análisis multinivel y dos revisiones literarias complementarias, esta tesis doctoral extiende el debate proporcionando riqueza múltiple de datos empíricos en un conocimiento de contexto limitado. El primer análisis se basa en la perspectiva del adoptante, que explora el nivel "micro" y el proceso social que subyace a la adopción de los sistemas fotovoltaicos. El segundo análisis es una perspectiva a nivel de empresa, que explora los modelos de negocio de las empresas y sus roles impulsores en la difusión de los sistemas fotovoltaicos. El tercero análisis es una perspectiva regional, la cual explora el nivel "meso", el proceso social que subyace a la adopción de sistemas fotovoltaicos y sus técnicas de modelado. Los resultados incluyen implicaciones tanto para académicos como políticos, no sólo sobre las innovaciones en energía renovable relativas a la paridad de red, sino también, de manera inductiva, sobre las innovaciones ambientales impulsadas por las políticas que logren la competitividad de costes. ABSTRACT Will renewable energy sources supply all of the world energy needs one day? Some argue yes, while others say no. However, in some regions of the world, the electricity production through renewable energy sources is already at a promising stage of development at which their electricity generation costs compete with conventional electricity sources’, i.e., grid parity. This achievement has been underpinned by the increase of technology efficiency, reduction of production costs and, above all, years of policy interventions of providing financial support. The diffusion of solar photovoltaic (PV) systems in Germany is an important frontrunner case in point. Germany is not only the top country in terms of installed PV systems’ capacity worldwide but also one of the pioneer countries where the grid parity has recently been achieved. However, there might be a cloud on the horizon. The diffusion rate has started to decline in many regions. In addition, local solar firms – which are known to be important drivers of diffusion – have started to face difficulties to run their businesses. These developments raise some important questions: Is this a temporary decline on diffusion? Will adopters continue to install PV systems? What about the business models of the local solar firms? Based on the case of PV systems in Germany through a multi-level analysis and two complementary literature reviews, this PhD Dissertation extends the debate by providing multiple wealth of empirical details in a context-limited knowledge. The first analysis is based on the adopter perspective, which explores the “micro” level and the social process underlying the adoption of PV systems. The second one is a firm-level perspective, which explores the business models of firms and their driving roles in diffusion of PV systems. The third one is a regional perspective, which explores the “meso” level, i.e., the social process underlying the adoption of PV systems and its modeling techniques. The results include implications for both scholars and policymakers, not only about renewable energy innovations at grid parity, but also in an inductive manner, about policy-driven environmental innovations that achieve the cost competiveness.
Resumo:
In some countries, photovoltaic (PV) technology is at a stage of development at which it can compete with conventional electricity sources in terms of electricity generation costs, i.e., grid parity. A case in point is Germany, where the PV market has reached a mature stage, the policy support has scaled down and the diffusion rate of PV systems has declined. This development raises a fundamental question: what are the motives to adopt PV systems at grid parity? The point of departure for the relevant literature has been on the impact of policy support, adopters and, recently, local solar companies. However, less attention has been paid to the motivators for adoption at grid parity. This paper presents an in-depth analysis of the diffusion of PV systems, explaining the impact of policy measures, adopters and system suppliers. Anchored in an extensive and exploratory case study in Germany, we provide a context-specific explanation to the motivations to adopt PV systems at grid parity.
Resumo:
The main goal of this work is to determine the true cost incurred by the Republic of Ireland and Northern Ireland in order to meet their EU renewable electricity targets. The primary all-island of Ireland policy goal is that 40% of electricity will come from renewable sources in 2020. From this it is expected that wind generation on the Irish electricity system will be in the region of 32-37% of total generation. This leads to issues resulting from wind energy being a non-synchronous, unpredictable and variable source of energy use on a scale never seen before for a single synchronous system. If changes are not made to traditional operational practices, the efficient running of the electricity system will be directly affected by these issues in the coming years. Using models of the electricity system for the all-island grid of Ireland, the effects of high wind energy penetration expected to be present in 2020 are examined. These models were developed using a unit commitment, economic dispatch tool called PLEXOS which allows for a detailed representation of the electricity system to be achieved down to individual generator level. These models replicate the true running of the electricity system through use of day-ahead scheduling and semi-relaxed use of these schedules that reflects the Transmission System Operator's of real time decision making on dispatch. In addition, it carefully considers other non-wind priority dispatch generation technologies that have an effect on the overall system. In the models developed, three main issues associated with wind energy integration were selected to be examined in detail to determine the sensitivity of assumptions presented in other studies. These three issues include wind energy's non-synchronous nature, its variability and spatial correlation, and its unpredictability. This leads to an examination of the effects in three areas: the need for system operation constraints required for system security; different onshore to offshore ratios of installed wind energy; and the degrees of accuracy in wind energy forecasting. Each of these areas directly impact the way in which the electricity system is run as they address each of the three issues associated with wind energy stated above, respectively. It is shown that assumptions in these three areas have a large effect on the results in terms of total generation costs, wind curtailment and generator technology type dispatch. In particular accounting for these issues has resulted in wind curtailment being predicted in much larger quantities than had been previously reported. This would have a large effect on wind energy companies because it is already a very low profit margin industry. Results from this work have shown that the relaxation of system operation constraints is crucial to the economic running of the electricity system with large improvements shown in the reduction of wind curtailment and system generation costs. There are clear benefits in having a proportion of the wind installed offshore in Ireland which would help to reduce variability of wind energy generation on the system and therefore reduce wind curtailment. With envisaged future improvements in day-ahead wind forecasting from 8% to 4% mean absolute error, there are potential reductions in wind curtailment system costs and open cycle gas turbine usage. This work illustrates the consequences of assumptions in the areas of system operation constraints, onshore/offshore installed wind capacities and accuracy in wind forecasting to better inform the true costs associated with running Ireland's changing electricity system as it continues to decarbonise into the near future. This work also proposes to illustrate, through the use of Ireland as a case study, the effects that will become ever more prevalent in other synchronous systems as they pursue a path of increasing renewable energy generation.
Resumo:
Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like Sao Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO2 emissions for the transportation and electricity production sectors could be expected.
Resumo:
Taking into account the fact that the sun’s radiation is estimated to be enough to cover 10.000 times the world’s total energy needs (BRAKMANN & ARINGHOFF, 2003), it is difficult to understand how solar photovoltaic systems (PV) are still such a small part of the energy source matrix across the globe. Though there is an ongoing debate as to whether energy consumption leads to economic growth or whether it is the other way around, the two variables appear correlated and it is clear that ensuring the availability of energy to match a country’s growth targets is one of the prime concerns for any government. The topic of centralized vs distributed electricity generation is also approached, especially in what regards the latter fit to developing countries needs, namely the lack of investment capabilities and infrastructure, scattered population, and other factors. Finally, Brazil’s case is reviewed, showing that the current cost of electricity from the grid versus the cost from PV solutions still places an investment of this nature with 9 to 16 years to reach breakeven (from a 25 year panel lifespan), which is too high compared to the required 4 years for most Brazilians. Still, recently passed legislation opened the door, even if unknowingly, to the development of co-owned solar farms, which could reduce the implementation costs by as much as 20% and hence reduce the number of years to breakeven by 3 years.
Resumo:
In my recent experimental research of wholesale electricity auctions, I discovered that the complex structure of the offers leaves a lot of room for strategic behavior, which consequently leads to anti- competitive and inefficient outcomes in the market. A specific feature of these complex-offer auctions is that the sellers submit not only the quantities and the minimum prices at which they are willing to sell, but also the start-up fees that are designed to reimburse the fixed start-up costs of the generation plants. In this paper, using the experimental method I compare the performance of two complex-offer auctions (COAs) against the performance of a simple-offer auction (SOA), in which the sellers have to recover all their generation costs --- fixed and variable ---through a uniform market-clearing price. I find that the SOA significantly reduces consumer prices and lowers price volatility. It mitigates anti-competitive effects that are present in the COAs and achieves allocative efficiency more quickly.
Resumo:
Copper Mountain, a Colorado ski area, evaluated onsite renewable energy generation to save on energy costs and reduce carbon emissions. Multiple resort locations were analyzed to determine suitable sites for implementation of solar electricity generation, wind electricity generation and biomass heat production. Potential project sites were assessed based on four criteria: costs and financial returns, environmental impacts, implementation and maintenance, and public relations/marketing opportunities. Solar projects had the lowest capital cost of the three types of renewable energy, and wind projects had high capital costs and low financial returns. Biomass projects had high capital costs, solid financial projections and good marketing value compared to wind and solar technologies. Project implementation recommendations were given based upon the evaluation.
Resumo:
To shift to a low-carbon economy, the EU has been encouraging the deployment of variable renewable energy sources (VRE). However, VRE lack of competitiveness and their technical specificities have substantially raised the cost of the transition. Economic evaluations show that VRE life-cycle costs of electricity generation are still today higher than those of conventional thermal power plants. Member States have consequently adopted dedicated policies to support them. In addition, Ueckerdt et al. (2013) show that when integrated to the power system, VRE induce supplementary not-accounted-for costs. This paper first exposes the rationale of EU renewables goals, the EU targets and current deployment. It then explains why the LCOE metric is not appropriate to compute VRE costs by describing integration costs, their magnitude and their implications. Finally, it analyses the consequences for the power system and policy options. The paper shows that the EU has greatly underestimated VRE direct and indirect costs and that policymakers have failed to take into account the burden caused by renewable energy and the return of State support policies. Indeed, induced market distortions have been shattering the whole power system and have undermined competition in the Internal Energy Market. EU policymakers can nonetheless take full account of this negative trend and reverse it by relying on competition rules, setting-up a framework to collect robust EU-wide data, redesigning the architecture of the electricity system and relying on EU regulators.
Resumo:
This thesis presents a comparison of integrated biomass to electricity systems on the basis of their efficiency, capital cost and electricity production cost. Four systems are evaluated: combustion to raise steam for a steam cycle; atmospheric gasification to produce fuel gas for a dual fuel diesel engine; pressurised gasification to produce fuel gas for a gas turbine combined cycle; and fast pyrolysis to produce pyrolysis liquid for a dual fuel diesel engine. The feedstock in all cases is wood in chipped form. This is the first time that all three thermochemical conversion technologies have been compared in a single, consistent evaluation.The systems have been modelled from the transportation of the wood chips through pretreatment, thermochemical conversion and electricity generation. Equipment requirements during pretreatment are comprehensively modelled and include reception, storage, drying and communication. The de-coupling of the fast pyrolysis system is examined, where the fast pyrolysis and engine stages are carried out at separate locations. Relationships are also included to allow learning effects to be studied. The modelling is achieved through the use of multiple spreadsheets where each spreadsheet models part of the system in isolation and the spreadsheets are combined to give the cost and performance of a whole system.The use of the models has shown that on current costs the combustion system remains the most cost-effective generating route, despite its low efficiency. The novel systems only produce lower cost electricity if learning effects are included, implying that some sort of subsidy will be required during the early development of the gasification and fast pyrolysis systems to make them competitive with the established combustion approach. The use of decoupling in fast pyrolysis systems is a useful way of reducing system costs if electricity is required at several sites because• a single pyrolysis site can be used to supply all the generators, offering economies of scale at the conversion step. Overall, costs are much higher than conventional electricity generating costs for fossil fuels, due mainly to the small scales used. Biomass to electricity opportunities remain restricted to niche markets where electricity prices are high or feed costs are very low. It is highly recommended that further work examines possibilities for combined beat and power which is suitable for small scale systems and could increase revenues that could reduce electricity prices.
Resumo:
This thesis investigates the cost of electricity generation using bio-oil produced by the fast pyrolysis of UK energy crops. The study covers cost from the farm to the generator’s terminals. The use of short rotation coppice willow and miscanthus as feedstocks was investigated. All costs and performance data have been taken from published papers, reports or web sites. Generation technologies are compared at scales where they have proved economic burning other fuels, rather than at a given size. A pyrolysis yield model was developed for a bubbling fluidised bed fast pyrolysis reactor from published data to predict bio-oil yields and pyrolysis plant energy demands. Generation using diesel engines, gas turbines in open and combined cycle (CCGT) operation and steam cycle plants was considered. The use of bio-oil storage to allow the pyrolysis and generation plants to operate independently of each other was investigated. The option of using diesel generators and open cycle gas turbines for combined heat and power was examined. The possible cost reductions that could be expected through learning if the technology is widely implemented were considered. It was found that none of the systems analysed would be viable without subsidy, but with the current Renewable Obligation Scheme CCGT plants in the 200 to 350 MWe range, super-critical coal fired boilers co-fired with bio-oil, and groups of diesel engine based CHP schemes supplied by a central pyrolysis plant would be viable. It was found that the cost would reduce with implementation and the planting of more energy crops but some subsidy would still be needed to make the plants viable.
Resumo:
Fast pyrolysis of biomass produces a liquid bio-oil that can be used for electricity generation. Bio-oil can be stored and transported so it is possible to decouple the pyrolysis process from the generation process. This allows each process to be separately optimised. It is necessary to have an understanding of the transport costs involved in order to carry out techno-economic assessments of combinations of remote pyrolysis plants and generation plants. Published fixed and variable costs for freight haulage have been used to calculate the transport cost for trucks running between field stores and a pyrolysis plant. It was found that the key parameter for estimating these costs was the number of round trips a day a truck could make rather than the distance covered. This zone costing approach was used to estimate the transport costs for a range of pyrolysis plants size for willow woodchips and baled miscanthus. The possibility of saving transport costs by producing bio-oil near to the field stores and transporting the bio-oil to a central plant was investigated and it was found that this would only be cost effective for large generation plants.
Resumo:
This paper proposes a method for scheduling tariff time periods for electricity consumers. Europe will see a broader use of modern smart meters for electricity at residential consumers which must be used for enabling demand response. A heuristic-based method for tariff time period scheduling and pricing is proposed which considers different consumer groups with parameters studied a priori, taking advantage of demand response potential for each group and the fairness of electricity pricing for all consumers. This tool was applied to the case of Portugal, considering the actual network and generation costs, specific consumption profiles and overall electricity low voltage demand diagram. The proposed method achieves valid results. Its use will provide justification for the setting of tariff time periods by energy regulators, network operators and suppliers. It is also useful to estimate the consumer and electric sector benefits from changes in tariff time periods.
Resumo:
One of the main referring subjects to the solar energy is how to compare it economically with other sources of energy, as much alternatives as with conventionals (like the electric grid). The purpose of this work was to develop a software which congregates the technical and economic main data to identify, through methods of microeconomic analysis, the commercial viability in the sizing of photovoltaic systems, besides considering the benefits proceeding from the proper energy generation. Considering the period of useful life of the components of the generation system of photovoltaic electricity, the costs of the energy proceeding from the conventional grid had been identified. For the comparison of the conventional sources, electric grid and diesel generation, three scenes of costs of photovoltaic panels and two for the factor of availability of diesel generation had been used. The results have shown that if the cost of the panels is low and the place of installation is more distant of the electric grid, the photovoltaic system becomes the best option.
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs may turn electricity generation by renewable sources valuable in electricity markets. Information availability and adequate decision-support tools are crucial for achieving VPPs’ goals. This involves information concerning associated producers and market operation. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, focusing mainly in the information requirements for adequate decision making.
Resumo:
Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.