987 resultados para elastic–viscoplastic soil model
Resumo:
Variable rate applications of nitrogen (N) are of environmental and economic interest. Regular measurements of soil N supply are difficult to achieve practically. Therefore accurate model simulations of soil N supply might provide a practical solution for site-specific management of N. Mineral N, an estimate of N supply, was simulated by the model SUNDIAL (Simulation of Nitrogen Dynamics In Arable Land) at more than 100 locations within three arable fields in Bedfordshire, UK. The results were compared with actual measurements. The outcomes showed that the spatial patterns of the simulations of mineral N corresponded to the measurements but the range of values was underestimated.
Resumo:
Models of the dynamics of nitrogen in soil (soil-N) can be used to aid the fertilizer management of a crop. The predictions of soil-N models can be validated by comparison with observed data. Validation generally involves calculating non-spatial statistics of the observations and predictions, such as their means, their mean squared-difference, and their correlation. However, when the model predictions are spatially distributed across a landscape the model requires validation with spatial statistics. There are three reasons for this: (i) the model may be more or less successful at reproducing the variance of the observations at different spatial scales; (ii) the correlation of the predictions with the observations may be different at different spatial scales; (iii) the spatial pattern of model error may be informative. In this study we used a model, parameterized with spatially variable input information about the soil, to predict the mineral-N content of soil in an arable field, and compared the results with observed data. We validated the performance of the N model spatially with a linear mixed model of the observations and model predictions, estimated by residual maximum likelihood. This novel approach allowed us to describe the joint variation of the observations and predictions as: (i) independent random variation that occurred at a fine spatial scale; (ii) correlated random variation that occurred at a coarse spatial scale; (iii) systematic variation associated with a spatial trend. The linear mixed model revealed that, in general, the performance of the N model changed depending on the spatial scale of interest. At the scales associated with random variation, the N model underestimated the variance of the observations, and the predictions were correlated poorly with the observations. At the scale of the trend, the predictions and observations shared a common surface. The spatial pattern of the error of the N model suggested that the observations were affected by the local soil condition, but this was not accounted for by the N model. In summary, the N model would be well-suited to field-scale management of soil nitrogen, but suited poorly to management at finer spatial scales. This information was not apparent with a non-spatial validation. (c),2007 Elsevier B.V. All rights reserved.
Resumo:
The potential of the τ-ω model for retrieving the volumetric moisture content of bare and vegetated soil from dual polarisation passive microwave data acquired at single and multiple angles is tested. Measurement error and several additional sources of uncertainty will affect the theoretical retrieval accuracy. These include uncertainty in the soil temperature, the vegetation structure and consequently its microwave singlescattering albedo, and uncertainty in soil microwave emissivity based on its roughness. To test the effects of these uncertainties for simple homogeneous scenes, we attempt to retrieve soil moisture from a number of simulated microwave brightness temperature datasets generated using the τ-ω model. The uncertainties for each influence are estimated and applied to curves generated for typical scenarios, and an inverse model used to retrieve the soil moisture content, vegetation optical depth and soil temperature. The effect of each influence on the theoretical soil moisture retrieval limit is explored, the likelihood of each sensor configuration meeting user requirements is assessed, and the most effective means of improving moisture retrieval indicated.
Resumo:
This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.
Resumo:
Agro-hydrological models have widely been used for optimizing resources use and minimizing environmental consequences in agriculture. SMCRN is a recently developed sophisticated model which simulates crop response to nitrogen fertilizer for a wide range of crops, and the associated leaching of nitrate from arable soils. In this paper, we describe the improvements of this model by replacing the existing approximate hydrological cascade algorithm with a new simple and explicit algorithm for the basic soil water flow equation, which not only enhanced the model performance in hydrological simulation, but also was essential to extend the model application to the situations where the capillary flow is important. As a result, the updated SMCRN model could be used for more accurate study of water dynamics in the soil-crop system. The success of the model update was demonstrated by the simulated results that the updated model consistently out-performed the original model in drainage simulations and in predicting time course soil water content in different layers in the soil-wheat system. Tests of the updated SMCRN model against data from 4 field crop experiments showed that crop nitrogen offtakes and soil mineral nitrogen in the top 90 cm were in a good agreement with the measured values, indicating that the model could make more reliable predictions of nitrogen fate in the crop-soil system, and thus provides a useful platform to assess the impacts of nitrogen fertilizer on crop yield and nitrogen leaching from different production systems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A quantificação do impacto das práticas de preparo sobre as perdas de carbono do solo é dependente da habilidade de se descrever a variabilidade temporal da emissão de CO2 do solo após preparo. Tem sido sugerido que as grandes quantidades de CO2 emitido após o preparo do solo podem servir como um indicador das modificações nos estoques de carbono do solo em longo termo. Neste trabalho é apresentado um modelo de duas partes baseado na temperatura e na umidade do solo e que inclui um termo exponencial decrescente do tempo que é eficiente no ajuste das emissões intermediárias após preparo: arado de disco seguido de uma passagem com a grade niveladora (convencional) e escarificador de arrasto seguido da passagem com rolo destorroador (reduzido). As emissões após o preparo do solo são descritas utilizando-se estimativa não linear com um coeficiente de determinação (R²) tão alto quanto 0.98 após preparo reduzido. Os resultados indicam que nas previsões da emissão de CO2 após o preparo do solo é importante considerar um termo exponencial decrescente no tempo após preparo.
Resumo:
Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dC(sail)(t)/dt = -kC(soil)(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where C-soil(t) is the available labile soil C (g m(-2)) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (F-NT) and tilled (F-Gamma) fluxes, which is: F-T = a1F(NT)e(-a2t), where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R-2), index of agreement and model efficiency, with R-2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a(2)) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a,). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a(1)) and - 1.52 x 10(-2) and 2.2 x 10(-2) day(-1) (a(2)). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A study was taken in a 1566 ha watershed situated in the Capivara River basin, municipality of Botucatu, São Paulo State, Brazil. This environment is fragile and can be subjected to different forms of negative impacts, among them soil erosion by water. The main objective of the research was to develop a methodology for the assessment of soil erosion fragility at the various different watershed positions, using the geographic information system ILWIS version 3.3 for Windows. An impact model was created to generate the soil's erosion fragility plan, based on four indicators of fragility to water erosion: land use and cover, slope, percentage of soil fine sand and accumulated water flow. Thematic plans were generated in a geographic information system (GIS) environment. First, all the variables, except land use and cover, were described by continuous numerical plans in a raster structure. The land use and cover plan was also represented by numerical values associated with the weights attributed to each class, starting from a pairwise comparison matrix and using the analytical hierarchy process. A final field check was done to record evidence of erosive processes in the areas indicated as presenting the highest levels of fragility, i.e., sites with steep slopes, high percentage of soil fine sand, tendency to accumulate surface water flow, and sites of pastureland. The methodology used in the environmental problems diagnosis of the study area can be employed at places with similar relief, soil and climatic conditions.
Resumo:
The modified Cam - Clay model was used to model experimental results of a saturated residual sandy soil from Sao Carlos - SP. Triaxial compression tests were performed using Bishop - Wesley cell with internal transducers to measure axial and radial strains. It was observed that the model fairly fitted experimental results, specially the principal stress difference at critical state. In general it was observed a good qualitative agreement between experimental and predicted strain values, considering compression or expansion of the samples. However, in all the stress path used, but 100 degrees and 140 degrees, the model yielded strains larger than that measured in the tests.
Resumo:
In this work, the spatial variability model of CO2 emissions and soil properties of a Brazilian bare soil were investigated. Carbon dioxide emissions were measured on three different days at contrasted soil temperature and soil moisture conditions, and soil properties were investigated at the same points where emissions were measured. One spatial variability model of soil CO2 emissions was found for each measurement day, and these models are similar to the ones of soil properties studied in an area of 100 x 100 m. (C) 2000 Elsevier B.V. Ltd. All rights reserved.