106 resultados para elasmobranchs
Resumo:
Data collected by fisheries observers aboard U.S. pelagic longline vessels were examined to quantify and describe elasmobranch bycatch off the southeastern U.S. coast (lat. 22°–35°N, long. 71°–82°W). From 1992 to 2000, 961 individual longline hauls were observed, during which 4,612 elasmobranchs (15% of the total catch) were documented. Of the 22 elasmobranch species observed, silky sharks, Carcharhinus falciformis, were numerically dominant (31.4% of the elasmobranch catch). The catch status of the animals (alive or dead) when the gear was retrieved varied widely depending on the species, with high mortalities seen for the commonly caught silky and night, C. signatus, sharks and low mortalities for rays (Dasyatidae and Mobulidae), blue, Prionace glauca; and tiger, Galeocerdo cuvier; sharks. Discard percentages also varied, ranging from low discards (27.6%) for shortfin mako, Isurus oxyrinchus, to high discards for blue (99.8%), tiger (98.5%), and rays (100%). Mean fork lengths indicated the majority of the observed by-catch — regardless of species — was immature, and significant quarterly variation in fork length was found for several species including silky; dusky, C. obscurus; night; scalloped hammerhead, Sphyrna lewini; oceanic whitetip, C. longimanus; and sandbar, C. plumbeus; sharks. While sex ratios overall were relatively even, blue, tiger, and scalloped hammerhead shark catches were heavily dominated by females. Bootstrap methods were used to generate yearly mean catch rates (catch per unit effort) and 95% confidence limits; catch rates were generally variable for most species, although regression analysis indicated significant trends for night, oceanic whitetip, and sandbar sharks. Analysis of variance indicated significant catch rate differences among quarters for silky, dusky, night, blue, oceanic whitetip, sandbar, and shortfin mako sharks.
Resumo:
Basking sharks, Cetorhinus maximus, are frequently observed along the central and northwestern southern California coast during the winter and spring months. These large plankton feeding elasmobranchs, second in size only to the whale shark, Rhineodon typus, had been the subject of a small commercial fishery off California in the late 1940's and early 1950's for their liver oil, rich in vitamin A, and in later years for reduction into fish meal and oil (Roedel and Ripley, 1950). These fisheries were sporadic and did not take basking sharks in large numbers.
Resumo:
Nos últimos anos, temas envolvendo a conservação de elasmobrânquios têm recebido maior atenção em muitos países. Muitas espécies passaram a ser consideradas ameaçadas de extinção pela IUCN, demonstrando a necessidade de ordenamento pesqueiro e elaboração de planos de manejo. Os Poluentes Orgânicos Persistentes correspondem a mais uma ameaça para esse grupo de peixes, no entanto, estudos envolvendo a contaminação desses organismos são recentes e vêm aumentando nos últimos anos. O presente estudo teve como objetivo principal a quantificação de compostos organoclorados em tecido hepático de uma espécie de raia criticamente ameaçada raia-borboleta, Gymnura altavela, residente na Baía de Guanabara, um dos ambientes estuarinos mais impactados do Brasil. Além disso, investigouse a influência de fatores biológicos, tais como estágio de maturidade sexual, sexo, tamanho e porcentagem de lipídio na matriz analisada, sobre os perfis de contaminação por esses xenobióticos. As concentrações dos compostos organoclorados foram determinadas com a utilização do cromatógrafo de fase gasosa com detector de captura de elétrons (CG-DCE), da marca Agilent Technologies, modelo 7890. Nossos resultados mostraram que as bifelinas policloradas (PCB) representam a classe mais importante de contaminantes com concentração média de 6.772,8 ( 4.659,4) ng.g-1 de lipídio e a maior concentração foi 18.513,1 ng.g-1 de lipídio em um indivíduo macho e jovem. Desse total, 66,5% foram representados pelos congêneres de PCBs 153>138>180>101>170. Quanto ao número de átomos de cloro, os PCBs pertences à classe dos hexa-clorados foram os mais abundantes. A concentração média do ΣDDT foi 646,0 ( 722,4) ng.g-1 de lipídio e o isômero mais representativo foi o p,p DDE com 65,7% do total. O ΣHCH, o HCB e o Mirex representaram 0,13% da contaminação total em G. altavela sendo, portanto, os compostos com as menores contribuições. A razão representada pela fórmula ΣDDT/ΣPCB foi de 0,09, caracterizando uma predominância de compostos de origem industrial. As correlações de Spearman apontaram para uma diminuição das concentrações do ΣPCB, ΣHCH e Mirex à medida que os indivíduos crescem. Não foram encontradas diferenças nas concentrações em relação aos diferentes estágios de maturidade sexual e entre machos e fêmeas.
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
Resumo:
The coastal area of approximately 2000 km and the water-bodies in between the Andaman and Nicobar islands are rich in fishery potential which range from 0.012-0.47 million tonnes. The fishery is dominated by catches of sardines, perches, carangids, mackerels, Leiognathus elasmobranchs, seerfish, mullets and tunas. About 2050 fishermen, with 1150 country craft, 113 mechanised boats and 1367 different kinds of nets and lines are engaged in active fishing in the island. Numerous bays, lagoons and creeks are available among the group of islands for mariculture activities. The mangroves of these islands provide feeding and nursery grounds for juveniles of penaeid prawns, crabs and finfishes.
Resumo:
Rod and line, hand-line, trolling line and fish-traps are the different types of fishing gears wherein suitable fish baits are employed with a view to luring the catch. The coastal fishermen of India mostly use different types of natural fish-baits to catch fishes like Perches, Carangids, Sciaenids, Scombroids and Elasmobranchs. The reactions of the fishes caught to the different baits used are quite varied. Successful line fishing operations very much depend on the fish-baits. A detailed record of the variety of fishes caught, types of fishing and different baits used by the coastal fishermen of India has been made.
Resumo:
Certain features characterise spoilage of sea foods, as distinct from spoilage of protein foods in general. Among sea foods spoilage differs in the crustaceans, teleosts, or elasmobranchs respectively. High levels of free amino acids concentrations are characteristic of prawns and other crustacean muscle. Changes occurring in these influence pattern of spoilage. Differences also exist in the sea prawns and prawns taken from the backwaters. Melanosis is a characteristic feature of spoilage in prawns. Observations have shown that prawns are very susceptible to spoilage at ordinary temperature, the period of absolute freshness not exceeding 4 hours, while prompt icing extends the period to 3-5 days.
Resumo:
Caudal neurosecretory system is an additional neuroendocrine system found in fishes. Great variation has been observed among different groups of fishes, so far its organization is concerned. Much work has been undertaken on the caudal neurosecretory system of elasmobranchs and teleosts. Large size scattered Dahlgren cells in the posterior end of spinal cord, corresponding to last few vertebrae, with long running axon process and a neurohaemal organ the urophysis are the characteristic features of the system. Although thoroughly investigated in fresh water carps, no work is reported in hill-stream fishes. In an attempt to investigate structure and organization of caudal neurosecretory system in hill-stream fishes, present investigation was undertaken in four hill-stream fish of Indian freshwater namely, Barilius bendelensis, Garra gotyla, Schizothorax plagiostomus and Tor tor. The organization of this system in hill-stream fishes was found to be quite different from that observed in fresh water carps. It displays an organization which is more close to the organization of caudal neurosecretory system observed in elasmobranchs. The features are described and discussed.
Resumo:
Elasmobranchs represent important components of marine ecosystems, but they can be vulnerable to overexploitation. This has driven investigations into the population genetic structure of large-bodied pelagic sharks, but relatively little is known of population structure in smaller demersal taxa, which are perhaps more representative of the biodiversity of the group. This study explores spatial population genetic structure of the small-spotted catshark (Scyliorhinus canicula), across European seas. The results show significant genetic differences among most of the Mediterranean sample collections, but no significant structure among Atlantic shelf areas. The data suggest the Mediterranean populations are likely to have persisted in a stable and structured environment during Pleistocene sea-level changes. Conversely, the Northeast Atlantic populations would have experienced major changes in habitat availability during glacial cycles, driving patterns of population reduction and expansion. The data also provide evidence of male-biased dispersal and female philopatry over large spatial scales, implying complex sex-determined differences in the behaviour of elasmobranchs. On the basis of this evidence, we suggest that patterns of connectivity are determined by trends of past habitat stability that provides opportunity for local adaptation in species exhibiting philopatric behaviour, implying that resilience of populations to fisheries and other stressors may differ across the range of species.
Resumo:
Using reversed-phase HPLC in combination with a radioimmunoassay for ovine corticotropin-releasing hormone (CRH), a peptide with CRH-like immunoreactivity was isolated in pure form from an extract of the caudal spinal cord region of the spotted dogfish, Scyliorhinus canicula. The primary structure of the peptide was established as Pro-Ala-Glu-Thr-Pro-Asn-Ser-Leu-Asp-Leu(10)-Thr-Phe-His-Leu-Leu-Arg-Glu-Met-Ile-Glu(20)-Ile-Ala-Lys-His-Glu-Asn-Gln-Gln-Met-Gln(30)-Ala-Asp-Ser-Asn-Arg-Arg-Ile-Met-Asp-Thr(40)-Ile . NH2. This amino acid sequence shows moderate structural similarity to Catostomus urotensin I (51%) and to human CRH (56%). The data provide, therefore, chemical evidence to support the conclusions of earlier immunohistochemical studies that the diffuse caudal neurosecretory system of elasmobranchs produces a peptide that is immunochemically related to teleost urotensin I peptides. However, the primary structure of urotensin I has been poorly conserved during evolution. (C) 1995 Academic Press, Inc.
Resumo:
Demersal fisheries targeting a few high-value species often catch and discard other "non-target" species. It is difficult to quantify the impact of this incidental mortality when population biomass of a non-target species is unknown. We calculate biomass for 14 demersal fish species in ICES Area VIIg (Celtic Sea) by applying species-and length-based catchability corrections to catch records from the Irish Groundfish Survey (IGFS). We then combine these biomass estimates with records of commercial discards (and landings for marketable non-target species) to calculate annual harvesting rates (HR) for each study species. Uncertainty is incorporated into estimates of both biomass andHR. Our survey-based HR estimates for cod and whiting compared well with HR-converted fishing mortality (F) estimates from analytical assessments for these two stocks. Of the non-target species tested, red gurnard (Chelidonichthys cuculus) recorded some annual HRs greater than those for cod or whiting; challenging "Pope's postulate" that F on non-target stocks in an assemblage will not exceed that on target stocks. We relate HR for each species to two corresponding maximum sustainable yield (MSY) reference levels; six non-target species (including three ray species) show annual HRs >= HRMSY. This result suggests that it may not be possible to conserve vulnerable non-target species when F is coupled to that of target species. Based on biomass, HR, and HRMSY, we estimate "total allowable catch" for each non-target species.
Resumo:
The continuing over-exploitation of traditional coastal stocks has resulted in the shift of commercial fishing towards deep-sea ecosystems in many parts of the world. The effects on target and non-target species have been dramatic; particularly for the deep-sea sharks. With the aim of providing tools that will allow the assessment of population genetic structure of Centroselachus crepidater, novel microsatellite loci have been developed for this deep-sea elasmobranch. Seven of these markers showed between 3 and 7 alleles per locus in two North Atlantic populations, with observed and expected heterozygosities between 0.18-0.95 and 0.25-0.82, respectively. Additionally, ten loci cross-amplify in other Elasmobranch species.
Resumo:
Deep-sea resources have been increasingly exploited, and due to that, several ecosystems and species have been considerably affected. Deep-water sharks populations have been of the most disturbed by practices of unselected fisheries, bycatch and discard, mainly due to their low commercial value. Those practices make deep-water sharks very vulnerable to overfishing given their life-history traits, increasing their extinction risk. With the prohibition of the direct fishery, and implementation of quotas and TACs (Total Allowable Catches) regarding the deep-sea shark landings, the official landings have dramatically decreased after the 1990s. However, the IUU (Illegal, unreported and unregulated) catch has exponentially increased. With the analysis of catch per unit effort (CPUE), the depths, and the mean weight of the individuals over the years for each one of the nine most caught species in the Azores, we produced a descriptive analysis of the effect of fisheries in those species. The results show that some of these species have been suffering from a great fishing pressure, and their populations will be greatly affected in the near future if drastic measures are not taken when it comes to managing their long term sustainability.
Resumo:
Tese de doutoramento, Ciências do Mar, da Terra e do Ambiente (Biologia Pesqueira), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Tese de mestrado em Ecologia Marinha, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016