923 resultados para egg production rate
Resumo:
Fishery scientists engaged in estimating the size of free-swimming populations have never had a technique available to them whereby all the parameters could be estimated from a resource survey and where no parameter values need to be assumed. Recognizing the need for a technique of this kind, the staff of the Coastal Fisheries Resources Division of the Southwest Fisheries Center (SWFC) devised an egg production method for anchovy biomass assessment. Previously, anchovy biomass was estimated by approximate methods derived from a long-time series and anchovy larval abundance, which required about 5 ma of shiptime each year to integrate the area under a seasonal spawning curve. One major assumption used in the larval abundance census method is that there is constant proportionality between larval numbers and spawning biomass. This has now proved to be erroneous. (PDF file contains 105 pages.)
Resumo:
Data collected during fish-ery-independent sampling programs were used to examine the impact of appendage damage (indicated by lost or regenerated legs and antennae) on the reproductive output of female western rock lobster (Panulirus cygnus). Most of the damaged females sampled had one (53%), two (27%), or three (13%) appendages that had been lost or that were regenerating. Appendage damage was associated with the reduced probability of a female developing ovigerous setae; and if setae were produced, with the reduced probability that females would produce more than one batch of eggs within a season. These effects were more pronounced as the number of damaged appendages increased. From data collected in 2002, it was estimated that the total number of eggs produced by mature females caught in the fishery was significantly reduced (P<0.001) by 3–9% when the impact of appendage damage was included.
Resumo:
Fish bioenergetics models estimate relationships between energy budgets and environmental and physiological variables. This study presents a generic rockfish (Sebastes) bioenergetics model and estimates energy consumption by northern California blue rockf ish (S. mystinus) under average (baseline) and El Niño conditions. Compared to males, female S. mystinus required more energy because they were larger and had greater reproductive costs. When El Niño conditions (warmer temperatures; lower growth, condition, and fecundity) were experienced every 3−7 years, energy consumption decreased on an individual and a per-recruit basis in relation to baseline conditions, but the decrease was minor (<4% at the individual scale, <7% at the per-recruit scale) compared to decreases in female egg production (12−19% at the individual scale, 15−23% at the per-recruit scale). When mortality in per-recruit models was increased by adding fishing, energy consumption in El Niño models grew more similar to that seen in the baseline model. However, egg production decreased significantly — an effect exacerbated by the frequency of El Niño events. Sensitivity analyses showed that energy consumption estimates were most sensitive to respiration parameters, energy density, and female fecundity, and that estimated consumption increased as parameter uncertainty increased. This model provides a means of understanding rockfish trophic ecology in the context of community structure and environmental change by synthesizing metabolic, demographic, and environmental information. Future research should focus on acquiring such information so that models like the bioenergetics model can be used to estimate the effect of climate change, community shifts, and different harvesting strategies on rockfish energy demands.
Resumo:
The reproductive biology of the whitemouth croaker (Micropogonias furnieri) inhabiting the estuarine waters of the Río de la Plata (Argentina-Uruguay) was studied by using histological analysis of the ovaries. Samples were collected during the spawning peak and the end of two breeding seasons (November 1995–Feb-ruary 1996 and November 1997–March 1998). Micropogonias furnieri is a multiple spawner with indeterminate annual fecundity. Spawning frequency, determined by using the percentage of females with postovulatory follicles, was about 31% in November 1995 and 25% in February 1996. At these frequencies, a female on average spawned a new batch of eggs every 3–4 days during the spawning season. Batch fecundity was fitted to a power function of length and a linear function of ovary-free female weight. The number of hydrated oocytes decreased at the end of the breeding season, coinciding with an increase of atresia. Annual egg production for a 40-cm-TL female was estimated to be between 3,300,000 and 7,300,000 eggs. In addition to the seasonal decrease in fecundity and spawning activity, a decline in egg size and weight toward the end of the breeding season was also observed.