54 resultados para ecotype
Resumo:
Waste products from the forest industry are to be spread in forests in Sweden to counteract nutrient depletion due to whole tree harvesting. This may increase the bioavailability of calcium (Ca) and heavy metals, such as cadmium (Cd), copper (Cu) and zinc (Zn) in forest soils. Heavy metals, like Cd, have already been enriched in forest soils in Sweden, due to deposition of air pollutions, and acidification of forest soils has increased the bioavailability of toxic metals for plant uptake. Changes in the bioavailability of metals may be reflected in altered accumulation of Ca and heavy metals in forest trees, changes in tree growth, including wood formation, and altered tree species composition. This thesis aims at examining: A) if inter- or intra- specific differences in sensitivity to Cd occur in the most common tree species of Sweden, and if so, to study if these can be explained by the uptake and distribution of Cd within the plant: B) how elevated levels of Ca, Cd, Cu and Zn affect the accumulation and attachment of metals in bark and wood, and growth of young Norway spruce (Picea abies): C) how waste products from the forest industry, such as wood ash, influence the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce. Sensitivity to Cd, and its uptake and distribution, in seedlings of Picea abies, Pinus sylvestris and Betula pendula from three regions (southern, central and northern parts) of Sweden, treated with varying concentrations of Cd, were compared. Differences in root sensitivity to Cd both among and within woody species were found and the differences could to some extent be explained by differences in uptake and translocation of Cd. The root sensitivity assays revealed that birch was the least, and spruce the most, sensitive species, both to the external and to tissue levels of Cd. The central ecotype of the species tested tended to be most Cd resistant. The radial distribution, accumulation and attachment of, and interactions between Ca and heavy metals in stems of two-year-old Norway spruce trees treated with elevated levels of Cd, Cu, Zn and/or Ca, were investigated. Further, the influence of these metals on growth, and on root metal content, was examined. Accumulation of the metals was enhanced in wood, bark and/or roots at elevated levels of the metal in question. Even at low levels of the metals, similar to after application of wood ash, an enhanced accumulation was apparent in wood and/or bark, except for Cd. The increased accumulation of Zn and Cu in the stem did not affect the growth. However, Cu decreased the accumulation of Ca in wood. Higher levels of Cu and Cd reduced the stem diameter and the toxic effect was associated with a reduced Ca content in wood. Copper and Cd also decreased the accumulation of Zn in the stem. On the other hand, elevated levels of Ca increased the stem diameter and reduced the accumulation of Cd, Cu, Zn and Mn in wood and/or bark. When metals interacted with each other the firmly bound fraction of the metal reduced was in almost all cases not affected. As an exception, Cd decreased the firmly bound fraction of Zn in the stem. The influence of pellets of wood ash (ash) or a mixture of wood ash and green liquor dregs (ash+GLD), in the amount of 3000 kg ha-1, on the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce in the field was examined. The effect of the treatments on the metal content of bark and wood was larger after 3 years than after 6 years. Treatment with ash+GLD had less effect on the heavy metal content of bark and wood than treatment with ash alone. The ash treatment increased the Cu and Zn content in bark and wood, respectively, after 3 years, and decreased the Ca content of the wood after 6 years. The ash+GLD treatment increased the Ca content of the bark and decreased the Zn content of bark and wood after 3 years. Both treatments reduced, or tended to decrease, the Cd content in wood and bark at both times. To conclude, small changes in the bioavailability of Ca, Cu, Cd and Zn in forest soils, such as after spreading pellets of wood ash or a mixture of wood ash and green liquor dregs from the forest industry, will be reflected in an altered accumulation of metals in wood and bark of Norway spruce. It will not only be reflected in changed accumulation of those metals in which bioavailability in the soil has been enhanced, but also of other metals, probably partly due to interactions between metals. When metals interact the exchangeable bound fraction of the metal reduced is suggested to be the main fraction affected. The small alterations in accumulation of metals should not affect the growth of Norway spruce, especially since the changes in accumulation of metals are low, and further since these decrease over time. However, as an exception, one positive and maybe persistent effect of the waste products is that these may decrease the accumulation of Cd in Norway spruce, which partly may be explained by competition with Ca for uptake, translocation and binding. A decreased accumulation of Cd in Norway spruce will probably affect the trees positively, since Norway spruce is one of the most sensitive species to Cd of the forest trees in Sweden. Thus, spreading of waste products from the forest industry may be a solution to decrease the accumulation of Cd in Norway spruce. In a longer perspective, this will decrease the risk of Cd altering the tree species composition of the forest ecosystem. An elevated bioavailability of Ca in forest soils will, in addition to Cd, probably also decrease the accumulation of other less competitive heavy metals, like Zn and Mn, in the stem.
Resumo:
Millets are versatile in tolerating to diverse climatic and soil conditions such as poor soil fertility and moisture deficit. Establishing optimum regeneration method for each millet type and ecotype is a pre-requisite prior to embarking on plant transformation as successes in plant transformation is largely dependent on the efficiency of regeneration. Various studies made to identify optimum regeneration and transformation methods as well as prospects of applying advanced techniques to these vital but under-studied crops of developing world are discussed.
Resumo:
Background: Clear examples of ecological speciation exist, often involving divergence in trophic morphology. However, substantial variation also exists in how far the ecological speciation process proceeds, potentially linked to the number of ecological axes, traits, or genes subject to divergent selection. In addition, recent studies highlight how differentiation might occur between the sexes, rather than between populations. We examine variation in trophic morphology in two host-plant ecotypes of walking-stick insects (Timema cristinae), known to have diverged in morphological traits related to crypsis and predator avoidance, and to have reached an intermediate point in the ecological speciation process. Here we test how host plant use, sex, and rearing environment affect variation in trophic morphology in this species using traditional multivariate, novel kernel density based and Bayesian morphometric analyses. Results: Contrary to expectations, we find limited host-associated divergence in mandible shape. Instead, the main predictor of shape variation is sex, with secondary roles of population of origin and rearing environment. Conclusion: Our results show that trophic morphology does not strongly contribute to host-adapted ecotype divergence in T. cristinae and that traits can respond to complex selection regimes by diverging along different intraspecific lines, thereby impeding progress toward speciation.
Resumo:
Although rapid phenotypic evolution during range expansion associated with colonization of contrasting habitats has been documented in several taxa, the evolutionary mechanisms that underlie such phenotypic divergence have less often been investigated. A strong candidate for rapid ecotype formation within an invaded range is the three-spine stickleback in the Lake Geneva region of central Europe. Since its introduction only about 140 years ago, it has undergone a significant expansion of its range and its niche, now forming phenotypically differentiated parapatric ecotypes that occupy either the pelagic zone of the large lake or small inlet streams, respectively. By comparing museum collections from different times with contemporary population samples, we here reconstruct the evolution of parapatric phenotypic divergence through time. Using genetic data from modern samples, we infer the underlying invasion history. We find that parapatric habitat-dependent phenotypic divergence between the lake and stream was already present in the first half of the twentieth century, but the magnitude of differentiation increased through time, particularly in antipredator defence traits. This suggests that divergent selection between the habitats occurred and was stable through much of the time since colonization. Recently, increased phenotypic differentiation in antipredator defence traits likely results from habitat-dependent selection on alleles that arrived through introgression from a distantly related lineage from outside the Lake Geneva region. This illustrates how hybridization can quickly promote phenotypic divergence in a system where adaptation from standing genetic variation was constrained.
Resumo:
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated.
Resumo:
Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.
Resumo:
The international, interdisciplinary biodiversity research project BIOTA AFRICA initiated a standardized biodiversity monitoring network along climatic gradients across the African continent. Due to an identified lack of adequate monitoring designs, BIOTA AFRICA developed and implemented the standardized BIOTA Biodiversity Observatories, that meet the following criteria (a) enable long-term monitoring of biodiversity, potential driving factors, and relevant indicators with adequate spatial and temporal resolution, (b) facilitate comparability of data generated within different ecosystems, (c) allow integration of many disciplines, (d) allow spatial up-scaling, and (e) be applicable within a network approach. A BIOTA Observatory encompasses an area of 1 km2 and is subdivided into 100 1-ha plots. For meeting the needs of sampling of different organism groups, the hectare plot is again subdivided into standardized subplots, whose sizes follow a geometric series. To allow for different sampling intensities but at the same time to characterize the whole square kilometer, the number of hectare plots to be sampled depends on the requirements of the respective discipline. A hierarchical ranking of the hectare plots ensures that all disciplines monitor as many hectare plots jointly as possible. The BIOTA Observatory design assures repeated, multidisciplinary standardized inventories of biodiversity and its environmental drivers, including options for spatial up- and downscaling and different sampling intensities. BIOTA Observatories have been installed along climatic and landscape gradients in Morocco, West Africa, and southern Africa. In regions with varying land use, several BIOTA Observatories are situated close to each other to analyze management effects.
Resumo:
The invasion of anthropogenic carbon dioxide into the surface ocean is altering seawater carbonate speciation, a process commonly called ocean acidification. The high latitude waters of the Southern Ocean are one of the primary and most severely affected regions. Coccolithophores are an important phytoplankton group, responsible for the majority of pelagic calcium carbonate production in the world's oceans, with a distribution that ranges from tropical to polar waters. Emiliania huxleyi is numerically the most abundant coccolithophore species and appears in several different ecotypes. We tested the effects of ocean acidification on 3 carefully selected E. huxleyi ecotypes isolated from the Southern Ocean. Their responses were measured in terms of growth, photosynthesis, calcification, cellular geometry, and stoichiometry. The 3 ecotypes exhibited differing sensitivities in regards to seawater carbonate chemistry when cultured at the same temperature (14°C) and continuous light (110 µmol photons/m2/s). Under future ocean acidification scenarios, particulate inorganic to organic carbon ratios (PIC:POC) decreased by 38-44, 47-51 and 71-98% in morphotype A 'over-calcified' (A o/c), A and B/C, respectively. All ecotypes reduced their rate of calcification, but the cold-water adapted ecotype (morphotype B/C) was by far the most sensitive, and almost ceased calcification at partial pressure of carbon dioxide ( pCO2) levels above 1000 µatm. We recommend that future surveys for E. huxleyi cells in the Southern Ocean should include the capability of recognising 'naked cells' by molecular and microscopic tools. The distinct differences in the physiological responses of these 3 dominant Southern Ocean coccolithophore ecotypes are likely to have consequences for future coccolithophore community structures and thereby the Southern Ocean carbon cycle.
Resumo:
Previously conducted sequence analysis of Arabidopsis thaliana (ecotype Columbia-0) reported an insertion of 270-kb mtDNA into the pericentric region on the short arm of chromosome 2. DNA fiber-based fluorescence in situ hybridization analyses reveal that the mtDNA insert is 618 ± 42 kb, ≈2.3 times greater than that determined by contig assembly and sequencing analysis. Portions of the mitochondrial genome previously believed to be absent were identified within the insert. Sections of the mtDNA are repeated throughout the insert. The cytological data illustrate that DNA contig assembly by using bacterial artificial chromosomes tends to produce a minimal clone path by skipping over duplicated regions, thereby resulting in sequencing errors. We demonstrate that fiber-fluorescence in situ hybridization is a powerful technique to analyze large repetitive regions in the higher eukaryotic genomes and is a valuable complement to ongoing large genome sequencing projects.
Resumo:
In this study we investigated the kinetics of the gravitropic response of the Arabidopsis mutant rgr1 (reduced root gravitropism). Although the rate of curvature in rgr1, which is allelic to axr4, was smaller than in the wild type (ecotype Wassilewskija), curvature was initiated in the same region of the root, the distal elongation zone. The time lag for the response was unaffected in the mutant; however, the gravitropic response of rgr1 contained a feature not found in the wild type: when roots growing along the surface of an agar plate were gravistimulated, there was often an upward curvature that initiated in the central elongation zone. Because this response was dependent on the tactile environment of the root, it most likely resulted from the superposition of the waving/coiling phenomenon onto the gravitropic response. We found that the frequency of the waving pattern and circumnutation, a cyclic endogenous pattern of root growth, was the same in rgr1 and in the wild type, so the waving/coiling phenomenon is likely governed by circumnutation patterns. The amplitudes of these oscillations may then be selectively amplified by tactile stimulation to provide a directional preference to the slanting.
Resumo:
This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI.
Resumo:
Divergent natural selection regimes can contribute to adaptive population divergence, but can be sensitive to human-mediated environmental change. Nutrient loading of aquatic ecosystems, for example, might modify selection pressures by altering the abundance and distribution of resources and the prevalence and infectivity of parasites. Here, we used a mesocosm experiment to test for interactive effects of nutrient loading and parasitism on host condition and feeding ecology. Specifically, we investigated whether the common fish parasite Gyrodactylus sp. differentially affected recently diverged lake and stream ecotypes of three-spined stickleback (Gasterosteus aculeatus). We found that the stream ecotype had a higher resistance to Gyrodactylus sp. infections than the lake ecotype, and that both ecotypes experienced a cost of parasitism, indicated by negative relationships between parasite load and both stomach fullness and body condition. Overall, our results suggest that in the early stages of adaptive population divergence of hosts, parasites can affect host resistance, body condition, and diet.
Resumo:
Heterotrimeric G proteinshave been previously linked to plant defense; however a role for the G beta gamma dimer in defense signaling has not been described to date. Using available Arabidopsis (Arabidopsis thaliana) mutants lacking functional G alpha or G beta subunits, we show that defense against the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum is impaired in G beta- deficient mutants while G alpha-deficient mutants show slightly increased resistance compared to wild-type Columbia ecotype plants. In contrast, responses to virulent (DC3000) and avirulent (JL1065) strains of Pseudomonas syringae appear to be independent of heterotrimeric G proteins. The induction of a number of defense-related genes in G beta-deficient mutants were severely reduced in response to A. brassicicola infection. In addition, G beta-deficient mutants exhibit decreased sensitivity to a number of methyl jasmonate- induced responses such as induction of the plant defensin gene PDF1.2, inhibition of root elongation, seed germination, and growth of plants in sublethal concentrations of methyl jasmonate. In all cases, the behavior of the G alpha- deficient mutants is coherent with the classic heterotrimeric mechanism of action, indicating that jasmonic acid signaling is influenced by the Gbg functional subunit but not by G alpha. We hypothesize that G beta gamma acts as a direct or indirect enhancer of the jasmonate signaling pathway in plants.
Resumo:
Marine phytoplankton can evolve rapidly when confronted with aspects of climate change because of their large population sizes and fast generation times. Despite this, the importance of environment fluctuations, a key feature of climate change, has received little attention-selection experiments with marine phytoplankton are usually carried out in stable environments and use single or few representatives of a species, genus or functional group. Here we investigate whether and by how much environmental fluctuations contribute to changes in ecologically important phytoplankton traits such as C:N ratios and cell size, and test the variability of changes in these traits within the globally distributed species Ostreococcus. We have evolved 16 physiologically distinct lineages of Ostreococcus at stable high CO2 (1031±87?µatm CO2, SH) and fluctuating high CO2 (1012±244?µatm CO2, FH) for 400 generations. We find that although both fluctuation and high CO2 drive evolution, FH-evolved lineages are smaller, have reduced C:N ratios and respond more strongly to further increases in CO2 than do SH-evolved lineages. This indicates that environmental fluctuations are an important factor to consider when predicting how the characteristics of future phytoplankton populations will have an impact on biogeochemical cycles and higher trophic levels in marine food webs.