930 resultados para dynamic probabilistic networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of nuclear power plant has to follow a number of regulations aimed at limiting the risks inherent in this type of installation. The goal is to prevent and to limit the consequences of any possible incident that might threaten the public or the environment. To verify that the safety requirements are met a safety assessment process is followed. Safety analysis is as key component of a safety assessment, which incorporates both probabilistic and deterministic approaches. The deterministic approach attempts to ensure that the various situations, and in particular accidents, that are considered to be plausible, have been taken into account, and that the monitoring systems and engineered safety and safeguard systems will be capable of ensuring the safety goals. On the other hand, probabilistic safety analysis tries to demonstrate that the safety requirements are met for potential accidents both within and beyond the design basis, thus identifying vulnerabilities not necessarily accessible through deterministic safety analysis alone. Probabilistic safety assessment (PSA) methodology is widely used in the nuclear industry and is especially effective in comprehensive assessment of the measures needed to prevent accidents with small probability but severe consequences. Still, the trend towards a risk informed regulation (RIR) demanded a more extended use of risk assessment techniques with a significant need to further extend PSA’s scope and quality. Here is where the theory of stimulated dynamics (TSD) intervenes, as it is the mathematical foundation of the integrated safety assessment (ISA) methodology developed by the CSN(Consejo de Seguridad Nuclear) branch of Modelling and Simulation (MOSI). Such methodology attempts to extend classical PSA including accident dynamic analysis, an assessment of the damage associated to the transients and a computation of the damage frequency. The application of this ISA methodology requires a computational framework called SCAIS (Simulation Code System for Integrated Safety Assessment). SCAIS provides accident dynamic analysis support through simulation of nuclear accident sequences and operating procedures. Furthermore, it includes probabilistic quantification of fault trees and sequences; and integration and statistic treatment of risk metrics. SCAIS comprehensively implies an intensive use of code coupling techniques to join typical thermal hydraulic analysis, severe accident and probability calculation codes. The integration of accident simulation in the risk assessment process and thus requiring the use of complex nuclear plant models is what makes it so powerful, yet at the cost of an enormous increase in complexity. As the complexity of the process is primarily focused on such accident simulation codes, the question of whether it is possible to reduce the number of required simulation arises, which will be the focus of the present work. This document presents the work done on the investigation of more efficient techniques applied to the process of risk assessment inside the mentioned ISA methodology. Therefore such techniques will have the primary goal of decreasing the number of simulation needed for an adequate estimation of the damage probability. As the methodology and tools are relatively recent, there is not much work done inside this line of investigation, making it a quite difficult but necessary task, and because of time limitations the scope of the work had to be reduced. Therefore, some assumptions were made to work in simplified scenarios best suited for an initial approximation to the problem. The following section tries to explain in detail the process followed to design and test the developed techniques. Then, the next section introduces the general concepts and formulae of the TSD theory which are at the core of the risk assessment process. Afterwards a description of the simulation framework requirements and design is given. Followed by an introduction to the developed techniques, giving full detail of its mathematical background and its procedures. Later, the test case used is described and result from the application of the techniques is shown. Finally the conclusions are presented and future lines of work are exposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of interdependence between housing and commuting in a city has been analysed within the framework of welfare economics. Uncertain changes overtime in the working population has been considered by means of a dynamic, probabilistic model. The characteristics of irreversibility and durability in city building have been explicitly dealt with. The ultimate objective is that the model after further development will be an auxiliary tool in city planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report for the first time on the limitations in the operational power range of network traffic in the presence of heterogeneous 28-Gbaud polarization-multiplexed quadrature amplitude modulation (PM-mQAM) channels in a nine-channel dynamic optical mesh network. In particular, we demonstrate that transponders which autonomously select a modulation order and launch power to optimize their own performance will have a severe impact on copropagating network traffic. Our results also suggest that altruistic transponder operation may offer even lower penalties than fixed launch power operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context/Motivation - Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. Questions/Problems - One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. Principal ideas/results - In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs. © 2013 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 17: Risk Analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Security networks are increasing in number and in importance across the security field as a means of providing inter-agency coordination. On the basis of a detailed qualitative study of networks in the field of national security in Australia, this article aims to advance our knowledge of the internal properties of security networks and conditions shaping their performance. It places ‘cooperation’, ‘coordination’ and ‘collaboration’ on a continuum, with cooperation at one end and collaboration at the other end, and aims to illustrate how each of these ‘Cs’ shape the performance of security networks. The central argument is that the performance of security networks increases as the network moves from cooperation to collaboration. Drawing on interviews with senior members of security, law enforcement and intelligence agencies, the article aims to highlight the lessons for how to strategically manage security networks in ways that promote collaboration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main challenges in the study of social networks in vertebrates is to close the gap between group patterns and dynamics. Usually scan samples or transect data are recorded to provide information about social patterns of animals, but these techniques themselves do not shed much light on the underlying dynamics of such groups. Here we show an approach which captures the fission-fusion dynamics of a fish population in the wild and demonstrates how the gap between pattern and dynamics may be closed. Our analysis revealed that guppies have complex association patterns that are characterised by close strong connections between individuals of similar behavioural type. Intriguingly, the preference for particular social partners is not expressed in the length of associations but in their frequency. Finally, we show that the observed association preferences could have important consequences for transmission processes in animal social networks, thus moving the emphasis of network research from descriptive mechanistic studies to functional and predictive ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by the need for designing efficient and robust fully-distributed computation in highly dynamic networks such as Peer-to-Peer (P2P) networks, we study distributed protocols for constructing and maintaining dynamic network topologies with good expansion properties. Our goal is to maintain a sparse (bounded degree) expander topology despite heavy {\em churn} (i.e., nodes joining and leaving the network continuously over time). We assume that the churn is controlled by an adversary that has complete knowledge and control of what nodes join and leave and at what time and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is a randomized distributed protocol that guarantees with high probability the maintenance of a {\em constant} degree graph with {\em high expansion} even under {\em continuous high adversarial} churn. Our protocol can tolerate a churn rate of up to $O(n/\poly\log(n))$ per round (where $n$ is the stable network size). Our protocol is efficient, lightweight, and scalable, and it incurs only $O(\poly\log(n))$ overhead for topology maintenance: only polylogarithmic (in $n$) bits needs to be processed and sent by each node per round and any node's computation cost per round is also polylogarithmic. The given protocol is a fundamental ingredient that is needed for the design of efficient fully-distributed algorithms for solving fundamental distributed computing problems such as agreement, leader election, search, and storage in highly dynamic P2P networks and enables fast and scalable algorithms for these problems that can tolerate a large amount of churn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic Bayesian Networks (DBNs) provide a versatile platform for predicting and analysing the behaviour of complex systems. As such, they are well suited to the prediction of complex ecosystem population trajectories under anthropogenic disturbances such as the dredging of marine seagrass ecosystems. However, DBNs assume a homogeneous Markov chain whereas a key characteristics of complex ecosystems is the presence of feedback loops, path dependencies and regime changes whereby the behaviour of the system can vary based on past states. This paper develops a method based on the small world structure of complex systems networks to modularise a non-homogeneous DBN and enable the computation of posterior marginal probabilities given evidence in forwards inference. It also provides an approach for an approximate solution for backwards inference as convergence is not guaranteed for a path dependent system. When applied to the seagrass dredging problem, the incorporation of path dependency can implement conditional absorption and allows release from the zero state in line with environmental and ecological observations. As dredging has a marked global impact on seagrass and other marine ecosystems of high environmental and economic value, using such a complex systems model to develop practical ways to meet the needs of conservation and industry through enhancing resistance and/or recovery is of paramount importance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses the problem of learning Bayesian network structures from data based on score functions that are decomposable. It describes properties that strongly reduce the time and memory costs of many known methods without losing global optimality guarantees. These properties are derived for different score criteria such as Minimum Description Length (or Bayesian Information Criterion), Akaike Information Criterion and Bayesian Dirichlet Criterion. Then a branch-and-bound algorithm is presented that integrates structural constraints with data in a way to guarantee global optimality. As an example, structural constraints are used to map the problem of structure learning in Dynamic Bayesian networks into a corresponding augmented Bayesian network. Finally, we show empirically the benefits of using the properties with state-of-the-art methods and with the new algorithm, which is able to handle larger data sets than before.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La modélisation de l’expérience de l’utilisateur dans les Interactions Homme-Machine est un enjeu important pour la conception et le développement des systèmes adaptatifs intelligents. Dans ce contexte, une attention particulière est portée sur les réactions émotionnelles de l’utilisateur, car elles ont une influence capitale sur ses aptitudes cognitives, comme la perception et la prise de décision. La modélisation des émotions est particulièrement pertinente pour les Systèmes Tutoriels Émotionnellement Intelligents (STEI). Ces systèmes cherchent à identifier les émotions de l’apprenant lors des sessions d’apprentissage, et à optimiser son expérience d’interaction en recourant à diverses stratégies d’interventions. Cette thèse vise à améliorer les méthodes de modélisation des émotions et les stratégies émotionnelles utilisées actuellement par les STEI pour agir sur les émotions de l’apprenant. Plus précisément, notre premier objectif a été de proposer une nouvelle méthode pour détecter l’état émotionnel de l’apprenant, en utilisant différentes sources d’informations qui permettent de mesurer les émotions de façon précise, tout en tenant compte des variables individuelles qui peuvent avoir un impact sur la manifestation des émotions. Pour ce faire, nous avons développé une approche multimodale combinant plusieurs mesures physiologiques (activité cérébrale, réactions galvaniques et rythme cardiaque) avec des variables individuelles, pour détecter une émotion très fréquemment observée lors des sessions d’apprentissage, à savoir l’incertitude. Dans un premier lieu, nous avons identifié les indicateurs physiologiques clés qui sont associés à cet état, ainsi que les caractéristiques individuelles qui contribuent à sa manifestation. Puis, nous avons développé des modèles prédictifs permettant de détecter automatiquement cet état à partir des différentes variables analysées, à travers l’entrainement d’algorithmes d’apprentissage machine. Notre deuxième objectif a été de proposer une approche unifiée pour reconnaître simultanément une combinaison de plusieurs émotions, et évaluer explicitement l’impact de ces émotions sur l’expérience d’interaction de l’apprenant. Pour cela, nous avons développé une plateforme hiérarchique, probabiliste et dynamique permettant de suivre les changements émotionnels de l'apprenant au fil du temps, et d’inférer automatiquement la tendance générale qui caractérise son expérience d’interaction à savoir : l’immersion, le blocage ou le décrochage. L’immersion correspond à une expérience optimale : un état dans lequel l'apprenant est complètement concentré et impliqué dans l’activité d’apprentissage. L’état de blocage correspond à une tendance d’interaction non optimale où l'apprenant a de la difficulté à se concentrer. Finalement, le décrochage correspond à un état extrêmement défavorable où l’apprenant n’est plus du tout impliqué dans l’activité d’apprentissage. La plateforme proposée intègre trois modalités de variables diagnostiques permettant d’évaluer l’expérience de l’apprenant à savoir : des variables physiologiques, des variables comportementales, et des mesures de performance, en combinaison avec des variables prédictives qui représentent le contexte courant de l’interaction et les caractéristiques personnelles de l'apprenant. Une étude a été réalisée pour valider notre approche à travers un protocole expérimental permettant de provoquer délibérément les trois tendances ciblées durant l’interaction des apprenants avec différents environnements d’apprentissage. Enfin, notre troisième objectif a été de proposer de nouvelles stratégies pour influencer positivement l’état émotionnel de l’apprenant, sans interrompre la dynamique de la session d’apprentissage. Nous avons à cette fin introduit le concept de stratégies émotionnelles implicites : une nouvelle approche pour agir subtilement sur les émotions de l’apprenant, dans le but d’améliorer son expérience d’apprentissage. Ces stratégies utilisent la perception subliminale, et plus précisément une technique connue sous le nom d’amorçage affectif. Cette technique permet de solliciter inconsciemment les émotions de l’apprenant, à travers la projection d’amorces comportant certaines connotations affectives. Nous avons mis en œuvre une stratégie émotionnelle implicite utilisant une forme particulière d’amorçage affectif à savoir : le conditionnement évaluatif, qui est destiné à améliorer de façon inconsciente l’estime de soi. Une étude expérimentale a été réalisée afin d’évaluer l’impact de cette stratégie sur les réactions émotionnelles et les performances des apprenants.