887 resultados para duchenne muscular dystrophy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Duchenne muscular dystrophy is a lethal genetic disease characterized by progressive muscle degeneration that usually had been used the Golden Retriever as a model for studying the disease (GRMD - Golden Retriever Muscular Dystrophy). A total of 16 male dystrophic Golden Retrievers dogs between 5 to 51 months of age were examined in the present study. The animals were classified as dystrophic according to two simultaneous complementary criteria: genotypic analysis and serum creatine kinase levels. The macroscopic abnormalities of the different organs and tissues and histopathological features were described using hematoxylin-eosin. The lesions in the skeletal muscles associated with the digestive problems resulted in cachexia with different intensities in all the dystrophic dogs. Cardiac muscle involvement was found in 87,5% of the GRMD dogs resulting, however, in cardiac failure in only 18,8% of the animals. The musculature of the diaphragm was hypertrophic in all affected animals resulting in progressive respiratory muscle weakness and at later stages in respiratory failure (81,25%). The liver abnormalities found in dystrophic dogs were originated mainly from heart disease and developed progressively. Hyperemia of mucosa and granular material indicated changes in the functioning and emptying of bladder. The germinative lineage cells presented moderate to severe degeneration probably due to degeneration of the scrotum and cremaster muscle which prevented the proper thermo-regulation of the testicle. Our results highlight the fact that there is significant impairment of the cardiac, respiratory and skeletal muscle systems in GRMD dogs since the age of five months. In addition, significant alterations of the gastrointestinal tract, urinary and reproductive systems are indicating the presence of degenerative lesions in the smooth musculature.
Resumo:
The present study had the objective of evaluating calcium accumulations in muscle fibers and their correlation with the canine muscular dystrophy. After the deaths of the animals (13 dystrophic and 3 non-dystrophic), samples of the skeletal muscles were collected. The material was stained with hematoxylin-eosin, Gomori's modified trichrome and alizarin red S technique (pH 4.3). The histopathological changes were analyzed and the proportions of calcium-positive (CPF) and negative muscle fibers were evaluated. Histopathological changes such as muscle fiber diameter changes, necrosis, hyalinization, presence of inflammatory infiltrate and fatty atrophy were identified in all the dystrophic muscles. Statistically significant differences in numbers of CPF between dystrophic muscles and non-dystrophics were observed for the masseter (6%), brachial biceps (5%) and triceps, sartorius and femoral biceps (4%) muscles. The identifying calcium is of interest as a parameter for helping in diagnostic screening.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background:The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.
Resumo:
Both Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations of the X-linked dystrophin gene. BMD patients are less affected clinically than DMD patients. We present five patients with a diagnosis of BMD. First, two identical twins, with a deletion of exon 48 of the dystrophin gene, who experienced prominent muscle cramps from the age of three. The histopathological examination of muscle biopsies of these two twins revealed only very slight muscle fiber alterations. Second, two brothers who displayed marked, unusual intrafamilial variability of the clinical picture as well as showing a new point mutation in the dystrophin gene. And finally, a fifth boy who displayed a new point mutation in the dystrophin gene. Although he was clinically asymptomatic at the age of 15 and muscle biopsy only showed very minor myopathic signs, serum Creatine Kinase (CK) levels had been considerably elevated for years. Taken together, these cases add to the spectrum of marked discrepancies in clinical, histopathological and molecular genetic findings in BMD.
Resumo:
Antisense oligonucleotides (AONs) hold promise for therapeutic correction of many genetic diseases via exon skipping, and the first AON-based drugs have entered clinical trials for neuromuscular disorders1, 2. However, despite advances in AON chemistry and design, systemic use of AONs is limited because of poor tissue uptake, and recent clinical reports confirm that sufficient therapeutic efficacy has not yet been achieved. Here we present a new class of AONs made of tricyclo-DNA (tcDNA), which displays unique pharmacological properties and unprecedented uptake by many tissues after systemic administration. We demonstrate these properties in two mouse models of Duchenne muscular dystrophy (DMD), a neurogenetic disease typically caused by frame-shifting deletions or nonsense mutations in the gene encoding dystrophin3, 4 and characterized by progressive muscle weakness, cardiomyopathy, respiratory failure5 and neurocognitive impairment6. Although current naked AONs do not enter the heart or cross the blood-brain barrier to any substantial extent, we show that systemic delivery of tcDNA-AONs promotes a high degree of rescue of dystrophin expression in skeletal muscles, the heart and, to a lesser extent, the brain. Our results demonstrate for the first time a physiological improvement of cardio-respiratory functions and a correction of behavioral features in DMD model mice. This makes tcDNA-AON chemistry particularly attractive as a potential future therapy for patients with DMD and other neuromuscular disorders or with other diseases that are eligible for exon-skipping approaches requiring whole-body treatment.
Resumo:
Neuronal nitric oxide synthase (nNOS) in fast-twitch skeletal muscle fibers is primarily particulate in contrast to its greater solubility in brain. Immunohistochemistry shows nNOS localized to the sarcolemma, with enrichment at force transmitting sites, the myotendinous junctions, and costameres. Because this distribution is similar to dystrophin, we determined if nNOS expression was affected by the loss of dystrophin. Significant nNOS immunoreactivity and enzyme activity was absent in skeletal muscle tissues from patients with Duchenne muscular dystrophy. Similarly, in dystrophin-deficient skeletal muscles from mdx mice both soluble and particulate nNOS was greatly reduced compared with C57 control mice. nNOS mRNA was also reduced in mdx muscle in contrast to mRNA levels for a dystrophin binding protein, alpha 1-syntrophin. nNOS levels increased dramatically from 2 to 52 weeks of age in C57 skeletal muscle, which may indicate a physiological role for NO in aging-related processes. Biochemical purification readily dissociates nNOS from the dystrophin-glycoprotein complex. Thus, nNOS is not an integral component of the dystrophin-glycoprotein complex and is not simply another dystrophin-associated protein since the expression of both nNOS mRNA and protein is affected by dystrophin expression.
Resumo:
Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. DMD is clinically characterized by severe, progressive and irreversible loss of muscle function, in which most patients lose the ability to walk by their early teens and die by their early 20’s. Impaired intracellular calcium (Ca2+) regulation and activation of cell degradation pathways have been proposed as key contributors to DMD disease progression. This dissertation research consists of three studies investigating the role of intracellular Ca2+ in skeletal muscle dysfunction in different mouse models of DMD. Study one evaluated the role of Ca2+-activated enzymes (proteases) that activate protein degradation in excitation-contraction (E-C) coupling failure following repeated contractions in mdx and dystrophin-utrophin null (mdx/utr-/-) mice. Single muscle fibers from mdx/utr-/- mice had greater E-C coupling failure following repeated contractions compared to fibers from mdx mice. Moreover, protease inhibition during these contractions was sufficient to attenuate E-C coupling failure in muscle fibers from both mdx and mdx/utr-/- mice. Study two evaluated the effects of overexpressing the Ca2+ buffering protein sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1) in skeletal muscles from mdx and mdx/utr-/- mice. Overall, SERCA1 overexpression decreased muscle damage and protected the muscle from contraction-induced injury in mdx and mdx/utr-/- mice. In study three, the cellular mechanisms underlying the beneficial effects of SERCA1 overexpression in mdx and mdx/utr-/- mice were investigated. SERCA1 overexpression attenuated calpain activation in mdx muscle only, while partially attenuating the degradation of the calpain target desmin in mdx/utr-/- mice. Additionally, SERCA1 overexpression decreased the SERCA-inhibitory protein sarcolipin in mdx muscle but did not alter levels of Ca2+ regulatory proteins (parvalbumin and calsequestrin) in either dystrophic model. Lastly, SERCA1 overexpression blunted the increase in endoplasmic reticulum stress markers Grp78/BiP in mdx mice and C/EBP homologous protein (CHOP) in mdx and mdx/utr-/- mice. Overall, findings from the studies presented in this dissertation provide new insight into the role of Ca2+ in muscle dysfunction and damage in different dystrophic mouse models. Further, these findings support the overall strategy for improving intracellular Ca2+ control for the development of novel therapies for DMD.
Resumo:
We studied cytogenetically 48 male patients with Duchenne or Becker muscular dystrophy. All of them showed normal X chromosomes. Fragility of Xp21 was investigated in 1400 G-banded chromosomes of 28 patients and only one break was observed at this band (0.07%). This low frequency of breakage excludes Xp21 as a fragile site in these patients.
Resumo:
La distrofia muscular de Duchenne y Becker (DMD/DMB) es una entidad de herencia recesiva ligada al cromosoma X que se presenta con debilidad muscular y es causada por mutaciones en el gen de la distrofina. La pérdida de heterocigocidad permite identificar a las mujeres portadoras de deleción en el gen de la distrofina mediante haplotipos. Objetivo: identificar mujeres portadoras en una familia con un paciente afectado de DMD mediante análisis de pérdida de heterocigocidad. Materiales y métodos: se analizaron nueve miembros de una familia con un afectado de DMD. Se hizo extracción de ADN y amplificación de diez STR del gen de la distrofina; se construyeron haplotipos, y se determinó el estado de portadora de deleción en dos de las seis mujeres analizadas, quienes mostraron pérdida de heterocigocidad de tres STR. Se establecieron algunos eventos de recombinación. Resultados: Dos de las seis mujeres analizadas, mostraron perdida de heterocigocidad en tres de los diez STR genotipificados, indicando su estado de portadora de deleción en este fragmento del gen de la Distrofina Con la segregación familiar de los haplotipos se establecieron eventos de recombinación. Conclusiones: mediante pérdida de heterocigocidad es posible establecer el estado de portadora de deleción en el gen de la distrofina con un 100% de certeza. La construcción de haplotipos identifica el cromosoma X portador de la deleción en familiares del caso índice. Se evidenció un evento de recombinación en una de las hermanas del afectado, lo que hace indeterminado su estado de portadora.
Resumo:
Ten females presenting with muscle weakness and a raised serum creatine kinase revealed abnormalities in the expression of dystrophin in their muscle biopsies and were diagnosed as manifesting carriers of Xp21 Duchenne/Becker muscular dystrophy. Seven cases, aged 3-22 yr at the time of biopsy, had a variable proportion of dystrophin-deficient fibres and an abnormal expression on immunoblot. These were confidently diagnosed as manifesting carriers. Results in the remaining three cases, aged 8-10 yr, were less clear-cut. Dystrophin expression on immunoblots was slightly reduced and some unevenness and reduction of immunolabelling was seen on sections, but dystrophin-deficient fibres were not a feature of these cases. The weakness in the ten carriers ranged from minimal to severe and there was no correlation between the degree of weakness and the number of dystrophin-deficient fibres. Two minimally weak girls had a high proportion of dystrophin-deficient fibres. Our results show that analysis of dystrophin expression is useful for the differential diagnosis of carriers of Xp21 dystrophy and autosomal muscular dystrophy, but that dystrophin expression does not correlate directly with the degree of clinical weakness.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
A distrofia muscular de Duchenne é uma doença genética caracterizada por enfraquecimento muscular progressivo e degeneração irreversível, acompanhados por danos sensoriais e neuropsicológicos. Os objetivos do estudo consistiram em avaliar o perfil comportamental de crianças/adolescentes com DMD e a influência do prejuízo motor, da idade no início do uso de cadeira de rodas e da idade no diagnóstico. Participaram 34 pacientes e 20 controles. Os pacientes formaram dois grupos conforme o quociente de inteligência (QI). Os pais responderam ao Inventário de Comportamentos da Infância e da Adolescência. Pacientes com DMD obtiveram escores mais baixos em Atividades e Sociabilidade (p < 0,01; ANCOVA). Os pacientes com QI < 80 apresentaram menores índices de Escolaridade. O prejuízo motor e as idades referentes à cadeira e ao diagnóstico correlacionaram-se com sintomas psiquiátricos/somáticos e problemas escolares. Os achados enfatizam a necessidade de programas educacionais acerca da doença como base para o desenvolvimento de estratégias de inclusão social.
Resumo:
OBJETIVO: Avaliar a responsividade da escala de avaliação funcional para pacientes com distrofia muscular de Duchenne (FES-DMD-D4), sentar e levantar do solo, no período de um ano. MÉTODO: Estudo observacional, longitudinal e retrospectivo. Foi estudada, utilizando o software FES-DMDDATA, uma amostra com 25 pacientes na atividade sentar no solo e 28 pacientes para a atividade levantar do solo. As avaliações ocorreram a cada três meses no período de um ano. Para análise estatística da capacidade de resposta foram utilizados índices de tamanho de efeito, como, effect size (ES) e Standardized Response Mean (SRM). RESULTADOS: A responsividade da atividade de sentar no solo foi considerada baixa a moderada em intervalos de três meses (ES de 0.28 a 0.54 e SRM de 0.38 a 0.71), moderada a alta em intervalos de seis meses (ES de 0.69 a 1.07 e SRM de 0.86 a 1.19), alta em intervalos de nove meses (ES de 1.3 a 1.17 e SRM de 1.26 a 1.55) e doze meses (ES de 1.9 e SRM de 1.72). Na atividade levantar do solo, a responsividade variou em baixa, moderada e alta em intervalos de três meses (ES de 0.21 a 0.33 e SRM de 0.45 a 0.83), baixa a alta em intervalos de seis meses (ES de 0.46 a 0.59 e SRM de 0.73 a 0.97), moderada a alta em intervalos de nove meses (ES de 0.76 a 0.88 e SRM de 1.03 a 1.22) e alta em doze meses (ES de 1.14 e SRM de 1.25). CONCLUSÃO: Para detectar alterações clinicamente significativas e consistentes nas atividades funcionais sentar e levantar do solo recomendamos a utilização da FES-DMD-D4 em intervalos a partir de seis meses, pois foi neste período de tempo que a capacidade de resposta variou de moderada a alta