948 resultados para dose response model
Resumo:
Diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] is a herbicide that induced urothelial tumors in the urinary bladder of Wistar rats fed 2500. ppm during a long-term study. The currently suggested non-genotoxic mode of action (MOA) of diuron encompasses in succession urothelial necrosis induced by direct cytotoxicity, regenerative cell proliferation and sustained urothelial hyperplasia that increases the likelihood of neoplasia development. This study evaluated the dose-response profile of urothelial histological and ultrastructural lesions induced by diuron. Sixty male Wistar rats were fed ad libitum diuron mixed in the diet at 0, 60, 125, 500, 1250, or 2500. ppm for 20 weeks. The incidences of urothelial simple hyperplasia and the cell proliferation index were significantly increased in the diuron-fed 1250 and 2500. ppm groups. By scanning electron microscopy, the incidences and severity of lesions were significantly increased in the 500 and 1250. ppm groups. The incidences of urothelial hyperplasia in the kidney pelvis were significantly increased in the 500, 1250 and 2500. ppm groups. The present study documents the dose-response influence of diuron on the rat urothelium, with a no observed effect level (NOEL) at 125. ppm; 1250. ppm was as effective as 2500. ppm at inducing urothelial lesions. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The production of epithelial neutrophil activating peptide-78 (NA-78) and the interleukins IL-8 and IL-6 by endometrial stromal cells is stimulated by pro-inflammatory interleukin-1 (IL-1) and tumour necrosis factor-α (TNF-α). IL-8 is suggested to play a role in the pathogenesis of endometriosis, and in these women the peritoneal fluid concentrations of ENA-78 and IL-8 are increased. TNF-α has been tested together with interferon-γ because of their cooperative stimulation of IL-6. The release of IL-8, however, is inhibited with increasing interferon levels. The aim of the study was the analysis of the production of ENA-78, IL-6 and IL-8 by cultured human endometrial stromal cells in the presence of varying concentrations of IL-1β, TNF-α, and interferon-γ.
Resumo:
Background The dose–response relation between physical activity and all-cause mortality is not well defined at present. We conducted a systematic review and meta-analysis to determine the association with all-cause mortality of different domains of physical activity and of defined increases in physical activity and energy expenditure. Methods MEDLINE, Embase and the Cochrane Library were searched up to September 2010 for cohort studies examining all-cause mortality across different domains and levels of physical activity in adult general populations. We estimated combined risk ratios (RRs) associated with defined increments and recommended levels, using random-effects meta-analysis and dose–response meta-regression models. Results Data from 80 studies with 1 338 143 participants (118 121 deaths) were included. Combined RRs comparing highest with lowest activity levels were 0.65 [95% confidence interval (95% CI) 0.60–0.71] for total activity, 0.74 (95% CI 0.70–0.77) for leisure activity, 0.64 (95% CI 0.55–0.75) for activities of daily living and 0.83 (95% CI 0.71–0.97) for occupational activity. RRs per 1-h increment per week were 0.91 (95% CI 0.87–0.94) for vigorous exercise and 0.96 (95% CI 0.93–0.98) for moderate-intensity activities of daily living. RRs corresponding to 150 and 300 min/week of moderate to vigorous activity were 0.86 (95% CI 0.80–0.92) and 0.74 (95% CI 0.65–0.85), respectively. Mortality reductions were more pronounced in women. Conclusion Higher levels of total and domain-specific physical activity were associated with reduced all-cause mortality. Risk reduction per unit of time increase was largest for vigorous exercise. Moderate-intensity activities of daily living were to a lesser extent beneficial in reducing mortality.
Resumo:
Context: IGF-I plays a central role in metabolism and growth regulation. High IGF-I levels are associated with increased cancer risk and low IGF-I levels with increased risk for cardiovascular disease. Objective: Our objective was to determine the relationship between circulating IGF-I levels and mortality in the general population using random-effects meta-analysis and dose-response metaregression. Data Sources: We searched PubMed, EMBASE, Web of Science, and Cochrane Library from 1985 to September 2010 to identify relevant studies. Study Selection: Population-based cohort studies and (nested) case-control studies reporting on the relation between circulating IGF-I and mortality were assessed for eligibility. Data Extraction: Data extraction was performed by two investigators independently, using a standardized data extraction sheet. Data Synthesis: Twelve studies, with 14,906 participants, were included. Overall, risk of bias was limited. Mortality in subjects with low or high IGF-I levels was compared with mid-centile reference categories. All-cause mortality was increased in subjects with low as well as high IGF-I, with a hazard ratio (HR) of 1.27 (95% CI = 1.08–1.49) and HR of 1.18 (95% CI = 1.04–1.34), respectively. Dose-response metaregression showed a U-shaped relation of IGF-I and all-cause mortality (P = 0.003). The predicted HR for the increase in mortality comparing the 10th IGF-I with the 50th percentile was 1.56 (95% CI = 1.31–1.86); the predicted HR comparing the 90th with the 50th percentile was 1.29 (95% CI = 1.06–1.58). A U-shaped relationship was present for both cancer mortality and cardiovascular mortality. Conclusions: Both low and high IGF-I concentrations are associated with increased mortality in the general population.
Resumo:
Copper (Cu) and its alloys are used extensively in domestic and industrial applications. Cu is also an essential element in mammalian nutrition. Since both copper deficiency and copper excess produce adverse health effects, the dose-response curve is U-shaped, although the precise form has not yet been well characterized. Many animal and human studies were conducted on copper to provide a rich database from which data suitable for modeling the dose-response relationship for copper may be extracted. Possible dose-response modeling strategies are considered in this review, including those based on the benchmark dose and categorical regression. The usefulness of biologically based dose-response modeling techniques in understanding copper toxicity was difficult to assess at this time since the mechanisms underlying copper-induced toxicity have yet to be fully elucidated. A dose-response modeling strategy for copper toxicity was proposed associated with both deficiency and excess. This modeling strategy was applied to multiple studies of copper-induced toxicity, standardized with respect to severity of adverse health outcomes and selected on the basis of criteria reflecting the quality and relevance of individual studies. The use of a comprehensive database on copper-induced toxicity is essential for dose-response modeling since there is insufficient information in any single study to adequately characterize copper dose-response relationships. The dose-response modeling strategy envisioned here is designed to determine whether the existing toxicity data for copper excess or deficiency may be effectively utilized in defining the limits of the homeostatic range in humans and other species. By considering alternative techniques for determining a point of departure and low-dose extrapolation (including categorical regression, the benchmark dose, and identification of observed no-effect levels) this strategy will identify which techniques are most suitable for this purpose. This analysis also serves to identify areas in which additional data are needed to better define the characteristics of dose-response relationships for copper-induced toxicity in relation to excess or deficiency.
Resumo:
BACKGROUND: Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). METHODS: The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. RESULTS: Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. CONCLUSION: These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes.
Resumo:
Methylphenidate (MPD), commonly known as Ritalin, is the most frequently prescribed drug to treat children and adults with attention deficit hyperactivity disorder (ADHD). Adolescence is a period of development involving numerous neuroplasticities throughout the central nervous system (CNS). Exposure to a psychostimulant such as MPD during this crucial period of neurodevelopment may cause transient or permanent changes in the CNS. Genetic variability may also influence these differences. Thus, the objective of the present study was to determine whether acute and chronic administration of MPD (0.6, 2.5, or 10.0mg/kg, i.p.) elicit effects among adolescent WKY, SHR, and SD rats and to compare whether there were strain differences. An automated, computerized, open-field activity monitoring system was used to study the dose-response characteristics of acute and repeated MPD administration throughout the 11-day experimental protocol. Results showed that all three adolescent rat groups exhibited dose-response characteristics following acute and chronic MPD administration, as well as strain differences. These strain differences depended on the MPD dose and locomotor index. Chronic treatment of MPD in these animals did not elicit behavioral sensitization, a phenomenon described in adult rats that is characterized by the progressive augmentation of the locomotor response to repeated administration of the drug. These results suggest that the animal's age at time of drug treatment and strain/genetic variability play a crucial role in the acute and chronic effect of MPD and in the development of behavioral sensitization.
Resumo:
A dose-response strategy may not only allow investigation of the impact of foods and nutrients on human health but may also reveal differences in the response of individuals to food ingestion based on their metabolic health status. In a randomized crossover study, we challenged 19 normal-weight (BMI: 20-25 kg/m(2)) and 18 obese (BMI: >30 kg/m(2)) men with 500, 1000, and 1500 kcal of a high-fat (HF) meal (60.5% energy from fat). Blood was taken at baseline and up to 6 h postprandially and analyzed for a range of metabolic, inflammatory, and hormonal variables, including plasma glucose, lipids, and C-reactive protein and serum insulin, glucagon-like peptide-1, interleukin-6 (IL-6), and endotoxin. Insulin was the only variable that could differentiate the postprandial response of normal-weight and obese participants at each of the 3 caloric doses. A significant response of the inflammatory marker IL-6 was only observed in the obese group after ingestion of the HF meal containing 1500 kcal [net incremental AUC (net iAUC) = 22.9 ± 6.8 pg/mL × 6 h, P = 0.002]. Furthermore, the net iAUC for triglycerides significantly increased from the 1000 to the 1500 kcal meal in the obese group (5.0 ± 0.5 mmol/L × 6 h vs. 6.0 ± 0.5 mmol/L × 6 h, P = 0.015) but not in the normal-weight group (4.3 ± 0.5 mmol/L × 6 h vs. 4.8 ± 0.5 mmol/L × 6 h, P = 0.31). We propose that caloric dose-response studies may contribute to a better understanding of the metabolic impact of food on the human organism. This study was registered at clinicaltrials.gov as NCT01446068.
Resumo:
INTRODUCTION Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. METHODS Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1-100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. RESULTS In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). CONCLUSION LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner.
Resumo:
Childhood obesity in the US has reached epidemic proportions. Minority children are affected the most by this epidemic. Although there is no clear relationship between obesity and fruits and vegetables consumption, studies suggest that eating fruits and vegetables could be helpful in preventing childhood obesity. A few school-based interventions targeting youth have been effective at increasing fruits and vegetables intake.^ In Austin, Texas, the Sustainable Food Center delivered the Sprouting Healthy Kids (SHK) program that targeted low socio-economic status children in four intervention middle schools. The SHK program delivered six intervention components. This school-based intervention included: a cafeteria component, in-class lessons, an after-school garden program, a field trip to a local farm, food tasting, and farmers' visits to schools. This study aimed to determine the effects of the SHK intervention in middle school students' preferences, motivation, knowledge, and self-efficacy towards fruits and vegetables intake, as well as the actual fruits and vegetables intake. The study also aimed to determine the effects of exposure to different doses of the SHK intervention on participants' fruits and vegetable intake.^ The SHK was delivered during Spring 2009. A total of 214 students completed the pre-and-posttest surveys measuring self-report fruits and vegetables intake as well as intrapersonal factors. The results showed that the school cafeteria, the food tasting, the after school program, and the farmers' visits had a positive effect on the participants' motivation, knowledge, and self-efficacy towards fruits and vegetables intake. The farmers' visits and the food tasting components increased participants' fruits and vegetables intake. Exposure to two or more intervention components increased participants' fruits and vegetables intake. The statistically significant dose-response effect size was .352, which suggests that each intervention component increased participants' fruits and vegetables consumption this amount. Certain intervention components were more effective than others. Food tasting and farmers visits increased participants fruits and vegetables intake, therefore these components should be offered in an ongoing basis. This study suggests that exposure to multiple intervention components increased behaviors and attitudes towards fruits and vegetables consumption. Findings are consistent that SHK can influence behaviors of middle school students.^
Resumo:
This study proposed a novel statistical method that modeled the multiple outcomes and missing data process jointly using item response theory. This method follows the "intent-to-treat" principle in clinical trials and accounts for the correlation between outcomes and missing data process. This method may provide a good solution to chronic mental disorder study. ^ The simulation study demonstrated that if the true model is the proposed model with moderate or strong correlation, ignoring the within correlation may lead to overestimate of the treatment effect and result in more type I error than specified level. Even if the within correlation is small, the performance of proposed model is as good as naïve response model. Thus, the proposed model is robust for different correlation settings if the data is generated by the proposed model.^