995 resultados para dopamine D3 receptors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 mug/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1beta, 1 mug/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The medicinal plants constitute a rich source of biologically active compounds used for the treatment of many psychiatric disorders, such as anxiety disorders and depression. Generalized anxiety disorder has increased significantly, being the second most prevalent disorder in care facilities to public health. Depression is considered a chronic and common psychiatric disorder that affects 350 million people of all ages around the world. In this context, the pharmacological intervention conduits have been employed, effective, although leave to be desired when observed adverse effects. The genus Passiflora is commonly commercially known by its fruit, but is also widely used in traditional Brazilian medicine. Passiflora edulis displays considerable morphological variability. This plant produces two types of fruit: Purple (Passiflora edulis Sims fo. edulis) and yellow (Passiflora edulis fo. flavicarpa Degener). This study investigated the central effects of aqueous extract of the leaves of the two varieties of the species Passiflora edulis in tests used to assess behavior related to anxiety and depression, as well as investigating the potential effect of the antidepressant-like fractions of edulis fo. edulis and neuropharmacological mechanisms responsible for this action. To conduct this study used male Swiss mice (2 months old, weighing 30-35 g). The animals received the aqueous extract of the leaves of the two species of Passiflora: edulis fo. edulis (100, 300, 1000 mg / kg) and fractions ethyl acetate, butanol and aqueous waste (25, 50, 75, 100 mg / kg) and edulis fo. flavicarpa (30, 100, 300, 1000 mg / kg) or saline by gavage 60 minutes prior to the maze tests at high cross the open field test, test forced swim test and sedation induced by thiopental. To investigate the mechanism of action of the activity of antidepressant type of fractions the following drugs were used: PCPA (inhibitor of 5-HT synthesis) AMPT (inhibitor of catecholamine synthesis), DSP-4 (noradrenergic neurotoxin) and Sulpiride (antagonist selective dopamine D2 receptor). They were used as a standard positive control, fluoxetine and nortriptyline. The results of the phytochemical profile show very different characteristics to the aqueous extract of the varieties of Passiflora edulis "flavicarpa" and "edulis". The aqueous extracts of both varieties of Passiflora edulis share anxiolytic activity type (edulis fo. edulis 300 mg/kg; edulis fo. flavicarpa 300 and 1000 mg/kg) and antidepressant (edulis fo. edulis 300 mg/kg; edulis fo flavicarpa 1000 mg/kg), while the effect hipolocomotor/sedative was only seen for edulis fo. edulis (1000 mg/kg). Both fractions ethyl acetate, butanol aqueous extract edulis fo. edulis showed activity type antidepressant at a dose of 50 mg/kg in the forced swim test. The data suggest that the effect of antidepressant-like fractions edulis fo. edulis involves catecholaminergic and serotonergic neurotransmission, particularly dopaminergic, there is seen that pre-treatment DSP-4 is not affected antidepressant action of fractions as was dependent activation of dopamine D2 receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The medicinal plants constitute a rich source of biologically active compounds used for the treatment of many psychiatric disorders, such as anxiety disorders and depression. Generalized anxiety disorder has increased significantly, being the second most prevalent disorder in care facilities to public health. Depression is considered a chronic and common psychiatric disorder that affects 350 million people of all ages around the world. In this context, the pharmacological intervention conduits have been employed, effective, although leave to be desired when observed adverse effects. The genus Passiflora is commonly commercially known by its fruit, but is also widely used in traditional Brazilian medicine. Passiflora edulis displays considerable morphological variability. This plant produces two types of fruit: Purple (Passiflora edulis Sims fo. edulis) and yellow (Passiflora edulis fo. flavicarpa Degener). This study investigated the central effects of aqueous extract of the leaves of the two varieties of the species Passiflora edulis in tests used to assess behavior related to anxiety and depression, as well as investigating the potential effect of the antidepressant-like fractions of edulis fo. edulis and neuropharmacological mechanisms responsible for this action. To conduct this study used male Swiss mice (2 months old, weighing 30-35 g). The animals received the aqueous extract of the leaves of the two species of Passiflora: edulis fo. edulis (100, 300, 1000 mg / kg) and fractions ethyl acetate, butanol and aqueous waste (25, 50, 75, 100 mg / kg) and edulis fo. flavicarpa (30, 100, 300, 1000 mg / kg) or saline by gavage 60 minutes prior to the maze tests at high cross the open field test, test forced swim test and sedation induced by thiopental. To investigate the mechanism of action of the activity of antidepressant type of fractions the following drugs were used: PCPA (inhibitor of 5-HT synthesis) AMPT (inhibitor of catecholamine synthesis), DSP-4 (noradrenergic neurotoxin) and Sulpiride (antagonist selective dopamine D2 receptor). They were used as a standard positive control, fluoxetine and nortriptyline. The results of the phytochemical profile show very different characteristics to the aqueous extract of the varieties of Passiflora edulis "flavicarpa" and "edulis". The aqueous extracts of both varieties of Passiflora edulis share anxiolytic activity type (edulis fo. edulis 300 mg/kg; edulis fo. flavicarpa 300 and 1000 mg/kg) and antidepressant (edulis fo. edulis 300 mg/kg; edulis fo flavicarpa 1000 mg/kg), while the effect hipolocomotor/sedative was only seen for edulis fo. edulis (1000 mg/kg). Both fractions ethyl acetate, butanol aqueous extract edulis fo. edulis showed activity type antidepressant at a dose of 50 mg/kg in the forced swim test. The data suggest that the effect of antidepressant-like fractions edulis fo. edulis involves catecholaminergic and serotonergic neurotransmission, particularly dopaminergic, there is seen that pre-treatment DSP-4 is not affected antidepressant action of fractions as was dependent activation of dopamine D2 receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Aberrant dopaminergic signaling is a critical determinant in multiple psychiatric disorders, and in many disease states, dopamine receptor number is altered. Here we identify a molecular mechanism that selectively targets D2 receptors for degradation after their activation by dopamine. The degradative fate of D2 receptors is determined by an interaction with G protein coupled receptor-associated sorting protein (GASP). As a consequence of this GASP interaction, D2 responses in rat brain fail to resensitize after agonist treatment. Disruption of the D2-GASP interaction facilitates recovery of D2 responses, suggesting that modulation of the D2-GASP interaction is important for the functional down-regulation of D2 receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purine compounds, such as caffeine, have many health-promoting properties and have proven to be beneficial in treating a number of different conditions. Theacrine, a purine alkaloid structurally similar to caffeine and abundantly present in Camellia kucha, has recently become of interest as a potential therapeutic compound. In the present study, theacrine was tested using a rodent behavioral model to investigate the effects of the drug on locomotor activity. Long Evans rats were injected with theacrine (24 or 48 mg/kg, i.p.) and activity levels were measured. Results showed that the highest dose of theacrine (48 mg/kg, i.p.) significantly increased locomotor activity compared to control animals and activity remained elevated throughout the duration of the session. To test for the involvement of adenosine receptors underlying theacrine's motor-activating properties, rats were administered a cocktail of the adenosine A₁ agonist, N⁶-cyclopentyladenosine (CPA; 0.1 mg/kg, i.p.) and A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.2 mg/kg, i.p.). Pre-treatment with theacrine significantly attenuated the motor depression induced by the adenosine receptor agonists, indicating that theacrine is likely acting as an adenosine receptor antagonist. Next, we examined the role of DA D₁ and D₂ receptor antagonism on theacrine-induced hyperlocomotion. Both antagonists, D₁R SCH23390 (0.1 or 0.05 mg/kg, i.p.) and D₂R eticlopride (0.1 mg/kg, i.p.), significantly reduced theacrine-stimulated activity indicating that this behavioral response, at least in part, is mediated by DA receptors. In order to investigate the brain region where theacrine may be acting, the drug (10 or 20 μg) was infused bilaterally into nucleus accumbens (NAc). Theacrine enhanced activity levels in a dose-dependent manner, implicating a role of the NAc in modulating theacrine's effects on locomotion. In addition, theacrine did not induce locomotor sensitization or tolerance after chronic exposure. Taken together, these findings demonstrate that theacrine significantly enhances activity; an effect which is mediated by both the adenosinergic and dopaminergic systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Varenicline, a neuronal nicotinic acetylcholine receptor (nAChR) modulator, decreases ethanol consumption in rodents and humans. The proposed mechanism of action for varenicline to reduce ethanol consumption has been through modulation of dopamine (DA) release in the nucleus accumbens (NAc) via α4*-containing nAChRs in the ventral tegmental area (VTA). However, presynaptic nAChRs on dopaminergic terminals in the NAc have been shown to directly modulate dopaminergic signalling independently of neuronal activity from the VTA. In this study, we determined whether nAChRs in the NAc play a role in varenicline’s effects on ethanol consumption. EXPERIMENTAL APPROACH Rats were trained to consume ethanol using the intermittent-access two-bottle choice protocol for 10 weeks. Ethanol intake was measured after varenicline or vehicle was microinfused into the NAc (core, shell or core-shell border) or the VTA (anterior or posterior). The effect of varenicline treatment on DA release in the NAc was measured using both in vivo microdialysis and in vitro fast-scan cyclic voltammetry (FSCV). KEY RESULTS Microinfusion of varenicline into the NAc core and core-shell border, but not into the NAc shell or VTA, reduced ethanol intake following long-term ethanol consumption. During microdialysis, a significant enhancement in accumbal DA release occurred following systemic administration of varenicline and FSCV showed that varenicline also altered the evoked release of DA in the NAc. CONCLUSION AND IMPLICATIONS Following long-term ethanol consumption, varenicline in the NAc reduces ethanol intake, suggesting that presynaptic nAChRs in the NAc are important for mediating varenicline’s effects on ethanol consumption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Eighteen corpora striata from normal human foetal brains ranging in gestational age from 16 to 40 weeks and five from post natal brains ranging from 23 days to 42 years were analysed for the ontogeny of dopamine receptors using [3H]spiperone as the ligand and 10 mM dopamine hydrochloride was used in blanks. Spiperone binding sites were characterized in a 40-week-old foetal brain to be dopamine receptors by the following criteria: (1) It was localized in a crude mitochondrial pellet that included synaptosomes; (2) binding was saturable at 0.8 nM concentration; (3) dopaminergic antagonists spiperone, haloperidol, pimozide, trifluperazine and chlorpromazine competed for the binding with IC50 values in the range of 0.3–14 nM while agonists—apomorphine and dopamine gave IC50 values of 2.5 and 10 μM, respectively suggesting a D2 type receptor.Epinephrine and norepinephrine inhibited the binding much less efficiently while mianserin at 10 μM and serotonin at 1 mM concentration did not inhibit the binding. Bimolecular association and dissociation rate constants for the reversible binding were 5.7 × 108 M−1 min−1 and 5.0 × 10−2 min−1, respectively. Equilibrium dissociation constant was 87 pM and the KD obtained by saturation binding was 73 pM.During the foetal age 16 to 40 weeks, the receptor concentration remained in the range of 38–60 fmol/mg protein or 570–1080 fmol/g striatum but it increased two-fold postnatally reaching a maximum at 5 years Significantly, at lower foetal ages (16–24 weeks) the [3H]spiperone binding sites exhibited a heterogeneity with a high (KD, 13–85 pM) and a low (KD, 1.2–4.6 nM) affinity component, the former accounting for 13–24% of the total binding sites. This heterogeneity persisted even when sulpiride was used as a displacer. The number of high affinity sites increased from 16 weeks to 24 weeks and after 28 weeks of gestation, all the binding sites showed only a single high affinity.GTP decreased the agonist affinity as observed by dopamine competition of [3H]spiperone binding in 20-week-old foetal striata and at all subsequent ages. GTP increased IC50 values of dopamine 2 to 4.5 fold and Hill coefficients were also increased becoming closer to one suggesting that the dopamine receptor was susceptible to regulation from foetal life onwards.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traumatic events always lead to aversive emotional memory, i.e., fear memory. In contrast, positive events in daily life such as sex experiences seem to reduce aversive memory after aversive events. Thus, we hypothesized that post-traumatic pleasurable ex

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dopamine is an important central nervous system transmitter that functions through two classes of receptors (D1 and D2) to influence a diverse range of biological processes in vertebrates. With roles in regulating neural activity, behavior, and gene expression, there has been great interest in understanding the function and evolution dopamine and its receptors. In this study, we use a combination of sequence analyses, microsynteny analyses, and phylogenetic relationships to identify and characterize both the D1 (DRD1A, DRD1B, DRD1C, and DRD1E) and D2 (DRD2, DRD3, and DRD4) dopamine receptor gene families in 43 recently sequenced bird genomes representing the major ordinal lineages across the avian family tree. We show that the common ancestor of all birds possessed at least seven D1 and D2 receptors, followed by subsequent independent losses in some lineages of modern birds. Through comparisons with other vertebrate and invertebrate species we show that two of the D1 receptors, DRD1A and DRD1B, and two of the D2 receptors, DRD2 and DRD3, originated from a whole genome duplication event early in the vertebrate lineage, providing the first conclusive evidence of the origin of these highly conserved receptors. Our findings provide insight into the evolutionary development of an important modulatory component of the central nervous system in vertebrates, and will help further unravel the complex evolutionary and functional relationships among dopamine receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It was found recently that locomotor and rewarding effects of psychostimulants and opiates were dramatically decreased or suppressed in mice lacking alpha1b-adrenergic receptors [alpha1b-adrenergic receptor knock-outs (alpha1bAR-KOs)] (Drouin et al., 2002). Here we show that blunted locomotor responses induced by 3 and 6 mg/kg d-amphetamine in alpha1bAR-KO mice [-84 and -74%, respectively, when compared with wild-type (WT) mice] are correlated with an absence of d-amphetamine-induced increase in extracellular dopamine (DA) levels in the nucleus accumbens of alpha1bAR-KO mice. Moreover, basal extracellular DA levels in the nucleus accumbens are lower in alpha1bAR-KO than in WT littermates (-28%; p < 0.001). In rats however, prazosin, an alpha1-adrenergic antagonist, decreases d-amphetamine-induced locomotor hyperactivity without affecting extracellular DA levels in the nucleus accumbens, a finding related to the presence of an important nonfunctional release of DA (Darracq et al., 1998). We show here that local d-amphetamine releases nonfunctional DA with the same affinity but a more than threefold lower amplitude in C57BL6/J mice than in Sprague Dawley rats. Altogether, this suggests that a trans-synaptic mechanism amplifies functional DA into nonfunctional DA release. Our data confirm the presence of a powerful coupling between noradrenergic and dopaminergic neurons through the stimulation of alpha1b-adrenergic receptors and indicate that nonfunctional DA release is critical in the interpretation of changes in extracellular DA levels. These results suggest that alpha1b-adrenergic receptors may be important therapeutic pharmacological targets not only in addiction but also in psychosis because most neuroleptics possess anti-alpha1-adrenergic properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La voie mésocorticolimbique est constitutée d’un ensemble d’éléments nerveux issus de l’aire tegmentaire ventrale mésencéphalique et projettant vers des régions corticales et sous-corticales. Les neurones à dopamine (DA) qui en font partie modulent plusieurs fonctions cognitives dont l’attention, l’apprentissage et la récompense. L’activité nerveuse des cellules à DA augmente lorsque l’organisme anticipe et reçoit une récompense, ainsi qu’au cours de la phase d’apprentissage des comportements d’appétence. Or, si l’activité dopaminergique de la voie mésocorticolimbique est désordonnée, voire aberrante, des stimuli neutres deviennent saillants et prennent une signification erronée. Cette anomalie fonctionnelle du système dopaminergique pourrait être à l’origine des symptômes psychotiques observés dans la schizophrénie. Cette hypothèse est renforcée par le fait que les médicaments antipsychotiques efficaces ont tous une activité antagoniste aux récepteurs à DA de type 2 (D2); les antipsychotiques dits classiques (i.e. halopéridole) possèdent une forte affinité pour les récepteurs D2 tandis que les antipsychotiques dits atypiques (i.e. clozapine) présentent une plus forte affinité pour les récepteurs à sérotonine de type 2a (5-HT2a) que pour les récepteurs D2. Les antipsychotiques atypiques semblent plus efficaces contre les symptômes négatifs (i.e. anhédonie) de la schizophrénie et induisent moins d’effets moteurs extrapyramidaux et de dysphorie que les antipsychotiques classiques. Il a été proposé que l’efficacité des antipsychotiques atypiques soit expliqué par leur double action antagoniste aux récepteurs 5-HT2a et D2. Afin de mieux comprendre les mécanismes de ces médicaments, nous avons étudié leurs effets sur la récompense en utilisant le modèle d’autostimulation intracérébrale (ASI) chez le rongeur. Le but de la première étude était d’évaluer l’effet d’un antagoniste sélectif des récepteurs 5-HT2a, le M100907, sur la récompense et sur l’atténuation de la récompense induite par l’halopéridole. L’hypothèse était que l’atténuation de la récompense induite par l’ajout du M100907 à l’halopéridole serait similaire à celle induite par la clozapine. Dans une seconde étude, l’effet sur la récompense d’un agoniste partiel aux récepteurs D2, l’OSU-6162, a été caractérisé sous deux conditions : i) en condition de base et ii) lorsque la neurotransmission dopaminergique est altérée par l’administration systémique de quinpirole, un agoniste des récepteurs D2/D3. Les hypothèses étaient que l’OSU-6162 i) atténuerait la récompense induite par la stimulation et ii) empêcherait l’atténuation et la facilitation de la récompense induites par le quinpirole. Les données obtenues montrent que le M100907 n’altère pas la récompense par lui-même mais réduit l’atténuation de la récompense induite par l’halopéridole. La co-administration du M100907 et de l’halopéridole induit une atténuation de la récompense d’amplitude similaire à celle induite par la clozapine, ce qui suggère que l’activité antagoniste aux récepteurs 5-HT2a de la clozapine contribue à son efficacité. Les données de la seconde étude montrent que l’OSU-6162 atténue la récompense, de manière dose-dépendante, ainsi que la facilitation, mais pas l’atténuation de la récompense induite par le quinpirole. Cette dernière observation suggère que l’OSU-6162 agit comme un antagoniste fonctionnel aux récepteurs D2 post-synaptiques. Un ensemble de données suggèrent que le comportement d’ASI constitue un modèle valide permettant d’évaluer l’efficacité antipsychotique potentielle de nouvelles molécules. Le comportement d’ASI est atténué par les antipsychotiques cliniquement efficaces mais est peu ou pas modifié par des molécules dépourvues d’activité antipsychotique. Les données obtenues dans cette thèse permettent de supposer que l’OSU-6162 possède une activité antipsychotique de nature atypique, et cela sans altérer la neurotransmission sérotoninergique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The high-affinity bindings of [3H]-5-hydroxytryptamine to serotonin S-1 receptors, [3H]-ketanserin to serotonin S-2 receptors in the cerebral cortex, [3H]- fluphenazine to dopamine D-1 receptors, and [3H]-spiroperidol to dopamine D-2 receptors in the corpus striatum were studied in pyridoxine-deficient rats and compared to pyridoxine-supplemented controls. There was a significant increase in the maximal binding (Bmax) of serotonin S-1 and S-2 receptors with a significant decrease in their binding affinities (Kd). However, there were no significant changes either in the maximal binding or binding affinity of striatal dopamine D- 1 and D-2 receptors. Receptor sensitivity seems to correlate negatively with the corresponding neurotransmitter concentrations in the pyridoxine-deficient rats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study was designed to investigate the protective effect of curcumin and vitamin D3 in the functional regulation of glutamatergic NMDA and AMPA receptors in streptozotocin (STZ) induced diabetic rats. Alterations in glutamatergic neurotransmission in the brain were evaluated by analyzing the glutamate content, glutamate receptors - NMDA and AMPA receptors binding parameters and gene expression, GAD and GLAST gene expression. Immunohistochemistry studies using confocal microscope were carried out to confirm receptor density and gene expression results of NMDA and AMPA receptors. The role of glutamatergic receptors in pancreas was studied using the following parameters; glutamate content, GLAST expression, glutamate receptors - NMDA and AMPA receptor binding and gene expression. Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of diabetes. In the present study SOD assay and GPx gene expression were done to evaluate the activity of antioxidant enzymes in the brain regions and pancreas. NeuroD1 and Pdx1 gene expression were performed in pancreas of experimental rats to evaluate pancreatic islet survival. Gene expression profiles of caspase 8, Bax, and Akt in brain regions and pancreas were studied to understand the possible mechanism behind curcumin and vitamin D3 mediated neuroprotection and islet survival. Gene expression studies of vitamin D3 receptor localisation in the pancreas was done to understand the mechanism of vitamin D3 in insulin secretion. Curcumin and vitamin D3 mediated insulin secretion via Ca2+ release were studied using confocal microscope.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1 Mechanisms of inverse agonist action at the D-2(short) dopamine receptor have been examined. 2 Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [H-3]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. 3 Competition of inverse agonists versus [H-3] NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K-i values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K-coupled and K-uncoupled were statistically different for the set of compounds tested ( ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. 4 These observations were supported by simulations of these competition experiments according to the extended ternary complex model. 5 Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [S-35]GTPγ S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. 6 These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is increasing evidence that G protein-coupled receptors form oligomers and that this might be important for their function. We have studied this phenomenon for the D-2 dopamine receptor and have shown-using a variety of biochemical and biophysical techniques-that this receptor forms dimers or higher-order oligomers. Using ligand-binding studies, we have also found evidence that this oligomer formation has functional relevance. Thus, for the receptor expressed in either CHO cells or Sf 9 insect cells, the binding properties of several radioligands (in saturation, competition, and dissociation assays) do not conform to those expected for a monomeric receptor with a single binding site. We propose that the receptors exist in oligomers with homotropic and heterotropic negatively cooperative interactions between ligands.