971 resultados para dominated splitting
Resumo:
Given an unweighted undirected or directed graph with n vertices, m edges and edge connectivity c, we present a new deterministic algorithm for edge splitting. Our algorithm splits-off any specified subset S of vertices satisfying standard conditions (even degree for the undirected case and in-degree ≥ out-degree for the directed case) while maintaining connectivity c for vertices outside S in Õ(m+nc2) time for an undirected graph and Õ(mc) time for a directed graph. This improves the current best deterministic time bounds due to Gabow [8], who splits-off a single vertex in Õ(nc2+m) time for an undirected graph and Õ(mc) time for a directed graph. Further, for appropriate ranges of n, c, |S| it improves the current best randomized bounds due to Benczúr and Karger [2], who split-off a single vertex in an undirected graph in Õ(n2) Monte Carlo time. We give two applications of our edge splitting algorithms. Our first application is a sub-quadratic (in n) algorithm to construct Edmonds' arborescences. A classical result of Edmonds [5] shows that an unweighted directed graph with c edge-disjoint paths from any particular vertex r to every other vertex has exactly c edge-disjoint arborescences rooted at r. For a c edge connected unweighted undirected graph, the same theorem holds on the digraph obtained by replacing each undirected edge by two directed edges, one in each direction. The current fastest construction of these arborescences by Gabow [7] takes Õ(n2c2) time. Our algorithm takes Õ(nc3+m) time for the undirected case and Õ(nc4+mc) time for the directed case. The second application of our splitting algorithm is a new Steiner edge connectivity algorithm for undirected graphs which matches the best known bound of Õ(nc2 + m) time due to Bhalgat et al [3]. Finally, our algorithm can also be viewed as an alternative proof for existential edge splitting theorems due to Lovász [9] and Mader [11].
Resumo:
MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.
Resumo:
Superlattices composed of ferromagnetic La0.6Sr0.4MnO3 and ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3(PbTiO3) layers were fabricated on (100) LaAlO3 substrates by pulsed laser deposition technique. The ferromagnetic and frequency independent ferroelectric hysteresis characteristics established the biferroic nature of the superlattices. Influence of magnetic field was observed in tuning the P-E characteristics of the superlattices. A similar effect was observed on application of a high dc electric field to the samples. The nature of the observed ferroelectric properties and their modulation by applied magnetic and electric fields were thus discussed in connection to the ferroelectric/ferromagnetic interfaces.
Resumo:
A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The present report illustrates the phenomenon of phase separation leading to the splitting of solid solution structured Ag-Co nanoparticles into pure Ag and pure Co nanoparticles upon isothermal annealing inside a transmission electron microscope. In bulk, Ag-Co system shows negligible mutual solubility into a single phase solid solution structure upto a very high temperature. The Ag-Co nanoparticle splitting revealed that room temperature, solid solution atomic configuration, between bulk immiscible Ag and Co atoms coexisting in a nano-sized particle, is a kinetically frozen atomic arrangement and not a thermodynamically stable structure. The observed phase separation behavior resulting in particle splitting at high temperatures can be used to produce devices for sensor applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.
Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems
Resumo:
An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.
Resumo:
The structure of the Arpropargyl alcohol (ArPA) complex is determined from the rotational spectra of the parent complex and its two deuterated isotopologues, namely ArPA-D(OD) and ArPA-D(CD). The spectra confirm a geometry in which PA exists in the gauche form with Ar located in between OH and CCH groups. All a, b and c types of transitions show small splitting due to some large-amplitude motion dominated by COH torsion, as in the monomer. Splittings in a- and b-type transitions are of the order of a few kilohertz, whereas splitting in the c-type transitions is relatively larger (0.92.6 MHz) and decreases in the order ArPA>ArPA-D(CD)>ArPA-D(OD). The assignments are well supported by ab initio calculations. Atoms in molecules (AIM) and electrostatic potential calculations are used to explore the nature of the interactions in this complex. AIM calculations not only reveal the expected OHAr and Ar interactions in the Argauche-PA complex, but also novel CAr (of CH2OH group) and OHAr interactions in the Artrans-PA complex. Similar interactions are also present in the Armethanol complex.
Resumo:
Opportunistic selection selects the node that improves the overall system performance the most. Selecting the best node is challenging as the nodes are geographically distributed and have only local knowledge. Yet, selection must be fast to allow more time to be spent on data transmission, which exploits the selected node's services. We analyze the impact of imperfect power control on a fast, distributed, splitting based selection scheme that exploits the capture effect by allowing the transmitting nodes to have different target receive powers and uses information about the total received power to speed up selection. Imperfect power control makes the received power deviate from the target and, hence, affects performance. Our analysis quantifies how it changes the selection probability, reduces the selection speed, and leads to the selection of no node or a wrong node. We show that the effect of imperfect power control is primarily driven by the ratio of target receive powers. Furthermore, we quantify its effect on the net system throughput.