997 resultados para divergence angle


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An arbitrary Lagrangian-Eulerian (ALE) finite element scheme for computations of soluble surfactant droplet impingement on a horizontal surface is presented. The numerical scheme solves the time-dependent Navier-Stokes equations for the fluid flow, scalar convection-diffusion equation for the surfactant transport in the bulk phase, and simultaneously, surface evolution equations for the surfactants on the free surface and on the liquid-solid interface. The effects of surfactants on the flow dynamics are included into the model through the surface tension and surfactant-dependent dynamic contact angle. In particular, the dynamic contact angle (theta(d)) of the droplet is defined as a function of the surfactant concentration at the contact line and the equilibrium contact angle (theta(0)(e)) of the clean surface using the nonlinear equation of state for surface tension. Further, the surface forces are included into the model as surface divergence of the surface stress tensor that allows to incorporate the Marangoni effects without calculating the surface gradient of the surfactant concentration on the free surface. In addition to a mesh convergence study and validation of the numerical results with experiments, the effects of adsorption and desorption surfactant coefficients on the flow dynamics in wetting, partially wetting and non-wetting droplets are studied in detail. It is observed that the effects of surfactants are more in wetting droplets than in the non-wetting droplets. Further, the presence of surfactants at the contact line reduces the equilibrium contact angle further when theta(0)(e) is less than 90 degrees, and increases it further when theta(0)(e) is greater than 90 degrees. Nevertheless, the presence of surfactants has no effect on the contact angle when theta(0)(e) = 90 degrees. The numerical study clearly demonstrates that the surfactant-dependent contact angle has to be considered, in addition to the Marangoni effect, in order to study the flow dynamics and the equilibrium states of surfactant droplet impingement accurately. The proposed numerical scheme guarantees the conservation of fluid mass and of the surfactant mass accurately. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical divergence of CO2 fluxes is observed over two Midwestern AmeriFlux forest sites. The differences in ensemble averaged hourly CO2 fluxes measured at two heights above canopy are relatively small (0.2–0.5 μmol m−2 s−1), but they are the major contributors to differences (76–256 g C m−2 or 41.8–50.6%) in estimated annual net ecosystem exchange (NEE) in 2001. A friction velocity criterion is used in these estimates but mean flow advection is not accounted for. This study examines the effects of coordinate rotation, averaging time period, sampling frequency and co-spectral correction on CO2 fluxes measured at a single height, and on vertical flux differences measured between two heights. Both the offset in measured vertical velocity and the downflow/upflow caused by supporting tower structures in upwind directions lead to systematic over- or under-estimates of fluxes measured at a single height. An offset of 1 cm s−1 and an upflow/downflow of 1° lead to 1% and 5.6% differences in momentum fluxes and nighttime sensible heat and CO2 fluxes, respectively, but only 0.5% and 2.8% differences in daytime sensible heat and CO2 fluxes. The sign and magnitude of both offset and upflow/downflow angle vary between sonic anemometers at two measurement heights. This introduces a systematic and large bias in vertical flux differences if these effects are not corrected in the coordinate rotation. A 1 h averaging time period is shown to be appropriate for the two sites. In the daytime, the absolute magnitudes of co-spectra decrease with height in the natural frequencies of 0.02–0.1 Hz but increase in the lower frequencies (<0.01 Hz). Thus, air motions in these two frequency ranges counteract each other in determining vertical flux differences, whose magnitude and sign vary with averaging time period. At night, co-spectral densities of CO2 are more positive at the higher levels of both sites in the frequency range of 0.03–0.4 Hz and this vertical increase is also shown at most frequencies lower than 0.03 Hz. Differences in co-spectral corrections at the two heights lead to a positive shift in vertical CO2 flux differences throughout the day at both sites. At night, the vertical CO2 flux differences between two measurement heights are 20–30% and 40–60% of co-spectral corrected CO2 fluxes measured at the lower levels of the two sites, respectively. Vertical differences of CO2 flux are relatively small in the daytime. Vertical differences in estimated mean vertical advection of CO2 between the two measurement heights generally do not improve the closure of the 1D (vertical) CO2 budget in the air layer between the two measurement heights. This may imply the significance of horizontal advection. However, a reliable assessment of mean advection contributions in annual NEE estimate at these two AmeriFlux sites is currently an unsolved problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compared the rate of fatigue and lower limb EMG activities during high-intensity constantload cycling in upright and supine postures. Eleven active males performed seven cycling exercise tests: one upright graded test, four fatigue tests (two upright, two supine) and two EMG tests (one upright, one supine). During the fatigue tests participants initially performed a 10 s all-out effort followed by a constant-load test with 10 s all-out bouts interspersed every minute. The load for the initial two fatigue tests was 80% of the peak power (PP) achieved during the graded test and these continued until failure. The remaining two fatigue tests were performed at 20% PP and were limited to the times achieved during the 80% PP tests. During the EMG tests subjects performed a 10 s all-out effort followed by a constant-load test to failure at 80% PP. Normalised EMG activities (% maximum, NEMG) were assessed in five lower limb muscles. Maximum power and maximum EMG activity prior to each fatigue and EMG test were unaffected by posture. The rate of fatigue at 80% PP was significantly higher during supine compared with upright posture (-68 ± 14 vs. -26 ± 6 W min-1, respectively, P\0.05) and the divergence of the fatigue responses occurred by the second minute of exercise. NEMG responses were significantly higher in the supine posture by 1–4 min of exercise. Results show that fatigue is significantly greater during supine compared with upright high-intensity cycling and this effect is accompanied by a reduced activation of musculature that is active during cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The significant divergence between the retention of 16 terpene standards on porous graphitized carbon (PGC) and C18 packing materials are illustrated. The PGC surface is shown to provide a selectivity toward shape, polarity, and structure that is not afforded by the C18 surface. This observation is illustrated by plots of the retention factors similar to those typically used to represent 2D-HPLC separations. A geometric approach to factor analysis was used to measure the separation divergence together with the selectivity and the product selectivity factors of closely related species. When a methanol mobile phase was used with the PGC surface, a large fraction of the separation space could be utilized. That is further reflected by a spreading angle of 80.3°. The PGC material was also successful at resolving structural isomers where the C18 phase was not. It was also found that the choice of the mobile phase is important when using this material. A much larger degree of space utilization was seen with methanol than with acetonitrile that displayed a spreading angle of only 40.8°.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in cancellous bone to vary with angle. Previously published predictions of the variation in wave speed with angle are reviewed. Predictions that allow tortuosity to be angle dependent but assume isotropic elasticity compare well with available data on wave speeds at large angles but less well for small angles near the normal to the trabeculae. Claims for predictions that only include angle-dependence in elasticity are found to be misleading. Audio-frequency data obtained at audio-frequencies in air-filled bone replicas are used to derive an empirical expression for the angle-and porosity-dependence of tortuosity. Predictions that allow for either angle dependent tortuosity or angle dependent elasticity or both are compared with existing data for all angles and porosities.