996 resultados para dissolution rate


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.

The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.

ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.

Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.

Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.

Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study we investigated the relations between community calcification of an entire coral reef in the northern Red Sea and annual changes in temperature, aragonite saturation and nutrient loading over a two year period. Summer (April-October) and winter (November-March) average calcification rates varied between 60 ± 20 and 30 ± 20 mmol·m-2·d-1, respectively. In general, calcification increased with temperature and aragonite saturation state of reef water with an apparent effect of nutrients, which is in agreement with most laboratory studies and in situ measurements of single coral growth rates. The calcification rates we measured in the reef correlated remarkably well with precipitation rates of inorganic aragonite calculated for the same temperature and degree of saturation ranges using empirical equations from the literature. This is a very significant finding considering that only a minute portion of reef calcification is inorganic. Hence, these relations could be used to predict the response of coral reefs to ocean acidification and warming.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ocean acidification (OA) is expected to reduce the net ecosystem calcification (NEC) rates and overall accretion of coral reef ecosystems. However, despite the fact that sediments are the most abundant form of calcium carbonate (CaCO3) in coral reef ecosystems and their dissolution may be more sensitive to OA than biogenic calcification, the impacts of OA induced sediment dissolution on coral reef NEC rates and CaCO3 accretion are poorly constrained. Carbon dioxide addition and light attenuation experiments were performed at Heron Island, Australia in an attempt to tease apart the influence of OA and organic metabolism (e.g. respiratory CO2 production) on CaCO3 dissolution. Overall, CaCO3 dissolution rates were an order of magnitude more sensitive to elevated CO2 and decreasing seawater aragonite saturation state (Omega Ar; 300-420% increase in dissolution per unit decrease in Omega Ar) than published reductions in biologically mediated calcification due to OA. Light attenuation experiments led to a 70% reduction in net primary production (NPP), which subsequently induced an increase in daytime (115%) and net diel (375%) CaCO3 dissolution rates. High CO2 and low light acted in synergy to drive a 575% increase in net diel dissolution rates. Importantly, disruptions to the balance of photosynthesis and respiration (P/R) had a significant effect on daytime CaCO3 dissolution, while average water column ?Ar was the main driver of nighttime dissolution rates. A simple model of platform-integrated dissolution rates was developed demonstrating that seasonal changes in photosynthetically active radiation (PAR) can have an important effect on platform integrated CaCO3 sediment dissolution rates. The considerable response of CaCO3 sediment dissolution to elevated CO2 means that much of the response of coral reef communities and ecosystems to OA could be due to increases in CaCO3 sediment and framework dissolution, and not decreases in biogenic calcification.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract - This study investigates the effect of solid dispersions prepared from of polyethylene glycol (PEG) 3350 and 6000 Da alone or combined with the non-ionic surfactant Tween 80 on the solubility and dissolution rate of a poorly soluble drug eprosartan mesylate (ESM) in attempt to improve its bioavailability following its oral administration.

INTRODUCTION

ESM is a potent anti-hypertension [1]. It has low water solubility and is classified as a Class II drug as per the Biopharmaceutical Classification Systems (BCS) leading to low and variable oral bioavailability (approximately 13%). [2]. Thus, improving ESM solubility and/or dissolution rate would eventually improve the drug bioavailability. Solid dispersion is widely used technique to improve the water solubility of poorly water-soluble drugs employing various biocompatible polymers. In this study, we aimed to enhance the solubility and dissolution of EMS employing solid dispersion (SD) formulated from two grades of poly ethylene glycol (PEG) polymers (i.e. PEG 3350 & PEG 6000 Da) either individually or in combination with Tween 80.

MATERIALS AND METHODS

ESM SDs were prepared by solvent evaporation method using either PEG 3350 or PEG 6000 at various (drug: polymer, w/w) ratios 1:1, 1:2, 1:3, 1:4, 1:5 alone or combined with Tween 80 added at fixed percentage of 0.1 of drug by weight?. Physical mixtures (PMs) of drug and carriers were also prepared at same ratios. Drug solid dispersions and physical mixtures were characterized in terms of drug content, drug dissolution using dissolution apparatus USP II and assayed using HPLC method. Drug dissolution enhancement ratio (ER %) from SD in comparison to the plain drug was calculated. Drug-polymer interactions were evaluated using Differential Scanning Calorimetry (DSC) and FT-IR.

RESULTS AND DISCUSSION

The in vitro solubility and dissolution studies showed SDs prepared using both polymers produced a remarkable improvement (p<0.05) in comparison to the plain drug which reached around 32% (Fig. 1). The dissolution enhancement ratio was polymer type and concentration-dependent. Adding Tween 80 to the SD did not show further dissolution enhancement but reduced the required amount of the polymer to get the same dissolution enhancement. The DSC and FT-IR studies indicated that using SD resulted in transformation of drug from crystalline to amorphous form.

CONCLUSIONS

This study indicated that SDs prepared by using both polymers i.e. PEG 3350 and PEG 6000 improved the in-vitro solubility and dissolution of ESM remarkably which may result in improving the drug bioavailability in vivo.

Acknowledgments

This work is a part of MSc thesis of O.M. Ali at the Faculty of Pharmacy, Aleppo University, Syria.

REFERENCES

[1] Ruilope L, Jager B: Eprosartan for the treatment of hypertension. Expert Opin Pharmacother 2003; 4(1):107-14

[2] Tenero D, Martin D, Wilson B, Jushchyshyn J, Boike S, Lundberg, D, et al. Pharmacokinetics of intravenously and orally administered Eprosartan in healthy males: absolute bioavailability and effect of food. Biopharm Drug Dispos 1998; 19(6): 351- 6.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solubilities and dissolution rates of three gypsum sources (analytical grade (AG), phosphogypsum (PG) and mined gypsum (MG)) with six MG size fractions ((mm) > 2.0, 1.0-2.0, 0.5-1.0, 0.25-0.5, 0.125-0.25, and < 0.125) were investigated in triple deionised water (TDI) and seawater to examine their suitability for bauxite residue amelioration. Gypsum solubility was greater in seawater (3.8 g L 1) than TDI (2.9 g L 1) due to the ionic strength effect, with dissolution in both TDI and seawater following first order kinetics. Dissolution rate constants varied with gypsum source (AR > PG > MG) due to reactivity and surface area differences, with 1:20 gypsum:solution suspensions reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to adsorb Ca from solution was also examined. The quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption combined with the comparatively rapid dissolution rates preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Instead, direct field application to the residue would ensure more efficient gypsum use. In addition, the formation of a sparingly soluble CaCO3 coating around the gypsum particles after mixing in a highly alkaline seawater/supernatant liquor (SNL) solution greatly reduced the rate of gypsum dissolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The corrosion behaviour of AZ21, AZ501 and AZ91 was studied in 1 N NaCl at pH 11 by measuring electrochemical polarization curves, electrochemical AC impedance spectroscopy (EIS) and simultaneously measuring the hydrogen evolution rate and the: magnesium dissolution rate. The corrosion rates increased in the following order: AZ501 < AZ21 < AZ91. The: corrosion behaviour was related to alloy microstructure as revealed by optical and electron microscopy. The beta phase was very stable in the test solution and was an effective cathode. The beta phase served two roles, as a barrier and as a galvanic cathode. If the beta phase is present in the alpha matrix as intergranular precipitates with a small volume fraction, then the beta phase mainly serves as a galvanic cathode, and accelerates the corrosion of the alpha matrix. If the beta Fraction is high, then the beta phase may mainly act as an anodic barrier to inhibit the overall corrosion of the alloy. The composition and compositional distribution in the alpha phase is also crucial to the overall corrosion performance of dual phase alloys. Increasing the aluminum concentration in the alpha phase increases the anodic dissolution rate and also increases the cathodic hydrogen evolution rate. Increasing the zinc concentration in the alpha phase may have the opposite effect. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The corrosion of die cast AZ91D was studied and related to its microstructure. For comparison and to more fully understand the behaviour of die cast AZ91D, corrosion studies and microstructural examinations were also carried out using slowly solidified high purity AZ91, Mg-2%Al, Mg-9%Al, low purity magnesium and high purity magnesium. Corrosion was studied in 1N NaCl at pH 11 by (1) observing the corrosion morphology, (2) measuring electrochemical polarisation curves and (3) simultaneously measuring both the hydrogen evolution rate and the magnesium dissolution rate. The skin of die cast AZ91D showed better corrosion resistance than the interior. This is attributed to a combination of(1) a higher volume fraction of the beta phase, (2) a more continuous beta phase distribution around finer alpha grains, and (3) lower porosity in the skin layer than in the interior of the die casting. This study showed that the casting method can influence the corrosion performance by its influence on the alloy microstructure. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Työssä perehdytään nopeasti liukenevien lääkeaineiden liukenemisnopeuden mittaamiseen optisesti. Tavoitteena olikehittää mittausjärjestely, jolla liukenemisen optinen mittaaminen olisi mahdollista. Työn kirjallisessa osiossa perehdytään liukenemisen teoriaan sekä mittauksien kannalta tärkeään valon absorption ja sironnan teoriaan. Työn kokeellisessa osassa tarkastellaan liukenemisnopeuden mittaamista,sitä varten kehitetyllä mittausjärjestelyllä sekä pohditaan menetelmänsoveltuvuutta nopeasti liukenevien lääkeaineiden liukenemisnopeuden mittaamiseen. Liukenemisnopeuden optinen mittaaminen osoittautui vaikeaksi joissakin tapauksissa pienten hiukkasten keveyden johdosta. Kevyet hiukkaset kostuivat liian hitaasti, mikä aiheutti ongelmia mittauksiin. Nopeasti kostuvilla hiukkasilla liukenemisnopeuden määrittäminen mittaus-signaalin perusteella oli huomattavasti helpompaa. Näillä aineilla mittaukset onnistuivat hyvin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this thesis research work focused on the carbonate precipitation of magnesium using magnesium hydroxide Mg(OH)2 and carbon dioxide (CO2) gas at ambient temperature and pressure. The rate of dissolution of Mg(OH)2 and precipitation kinetics were investigated under different operating conditions. The conductivity and pH of the solution were inline monitored by a Consort meter and the solid samples gotten from the precipitation reaction were analysed by a laser diffraction analyzer Malvern Mastersizer to obtain particle size distributions (PSD) of crystal samples. Also the Mg2+ concentration profiles were determined from the liquid phase of the precipitate by ion chromatography (IC) analysis. Crystal morphology of the obtained precipitates were also investigated and discussed in this work. For the carbonation reaction of magnesium hydroxide in the present work, it was found that magnesium carbonate trihydrate (nesquehonite) was the main product and its formation occurred at a pH of around 7-8. The stirrer speed has a significant effect on the dissolution rate of Mg(OH)2. The highest obtained Mg2+ concentration level was 0.424 mol L-l for the 470 rpm and 0.387 mol L-1 for the 560 rpm which corresponded to the processing time of 45 mins and 40 mins respectively. The particle size distribution shows that the average particle size keeps increasing during the reaction as the CO2 is been fed to the system. The carbonation process is kinetically favored and simple as nesquehonite formation occurs in a very short time. It is a thermodynamically and chemically stable solid product, which allows for a long-term storage of CO2. Since the carbonation reaction is a complex system which includes dissolution of magnesium hydroxide particles, absorption of CO2, chemical reaction and crystallization, the dissolution of magnesium hydroxide was studied in hydrochloric acid (HCl) solvent with and without nitrogen (N2) inert gas. It was found on the dissolution part that the impeller speed had effect on the dissolution rate. The higher the impeller speed the higher the pH of the solution, although for the highest speed of 650rpm it was not the case. Therefore, it was concluded that the optimum speed of the stirrer was 560rpm. The influence of inert gas N2 on the dissolution rate of Mg(OH)2 particles could be seen based on measured pH, electric conductivity and Mg2+ concentration curves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Faculté de Pharmacie

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’objectif de ce projet était de développer une formulation liquisolide (LS) de clozapine ayant des propriétés de dissolution améliorées et évaluer sa stabilité et ainsi que sa robustesse à la modification d’excipients. Le propylène glycol (PG), la cellulose microcrystalline (MCC) et le glycolate d’amidon sodique (SSG) ont été utilisés respectivement en tant que véhicule liquide non volatile, agent de masse et agent désintégrant pour la préparation de comprimés LS. Le dioxyde de silicium colloïdal (CSD), le silicate de calcium (CS) et l'aluminométasilicate de magnésium (MAMS) ont été choisis comme agents d’enrobage sec. La caractérisation complète des mélanges et des comprimés a été effectuée. Le taux de libération des comprimés LS était statistiquement supérieur à celui des comprimés réguliers. La surface spécifique des matériaux d’enrobage avait un effet sur les propriétés d’écoulement des mélanges et la taille des particules des matériaux d’enrobage a eu un effet sur la vitesse de dissolution. Le ratio support/enrobage du mélange de poudres (valeur de R) était un paramètre important pour les systèmes LS et devait être plus grand que 20 afin d’obtenir une meilleure libération du médicament. La formulation choisie a démontré une stabilité pour une période d’au moins 12 mois. La technique LS s’est avéré une approche efficace pour le développement de comprimés de clozapine ayant des propriétés de dissolution améliorées. Les comprimés oro-dispersibles (ODT) sont une formulation innovante qui permettent de surmonter les problèmes de déglutition et de fournir un début d'action plus rapide. Dans l’optique d’améliorer les propriétés de dissolution, un essai a été effectué pour étudier la technique LS dans la formulation des ODT de clozapine. Le PG, la MCC, le CSD et la crospovidone (CP) ont été utilisés respectivement en tant que véhicule liquide non volatile, agent de masse, agent d’enrobage sec et agent superdésintégrant pour la préparation de comprimés oro-dispersibles liquisolides (OD-LST). Le mannitol a été choisi comme agent de masse et agent édulcorant. La saccharine de sodium a été utilisée comme agent édulcorant. La caractérisation complète des comprimés a été effectuée. Le taux de libération des OD-LSTs était statisquement supérieur comparativement aux comprimés ODTs. La formulation choisie a démontré une stabilité pour une période d’au moins 6 mois. Il a été conclu que des ODT de clozapine peuvent être préparés avec succès en utilisant la technologie LS dans le but d’améliorer la désintégration et le taux de dissolution de la clozapine dans la cavité orale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reduction of indigo (dispersed in water) to leuco-indigo (dissolved in water) is an important industrial process and investigated here for the case of glucose as an environmentally benign reducing agent. In order to quantitatively follow the formation of leuco-indigo two approaches based on (i) rotating disk voltammetry and (ii) sonovoltammetry are developed. Leuco-indigo, once formed in alkaline solution, is readily monitored at a glassy carbon electrode in the mass transport limit employing hydrodynamic voltammetry. The presence of power ultrasound further improves the leuco-indigo determination due to additional agitation and homogenization effects. While inactive at room temperature, glucose readily reduces indigo in alkaline media at 65 degrees C. In the presence of excess glucose, a surface dissolution kinetics limited process is proposed following the rate law d eta(leuco-indigo)/dt = k x c(OH-) x S-indigo where eta(leuco-indigo) is the amount of leuco-indigo formed, k = 4.1 x 10(-9) m s(-1) (at 65 degrees C, assuming spherical particles of I gm diameter) is the heterogeneous dissolution rate constant,c(OH-) is the concentration of hydroxide, and Sindigo is the reactive surface area. The activation energy for this process in aqueous 0.2 M NaOH is E-A = 64 U mol(-1) consistent with a considerable temperature effects. The redox mediator 1,8-dihydroxyanthraquinone is shown to significantly enhance the reaction rate by catalysing the electron transfer between glucose and solid indigo particles. (c) 2006 Elsevier Ltd. All fights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ibuprofen (IB), a BCS Class II compound, is a highly crystalline substance with poor solubility properties. Here we report on the disruption of this crystalline structure upon intimate contact with the polymeric carrier cross-linked polyvinylpyrrolidone (PVP-CL) facilitated by low energy simple mixing. Whilst strong molecular interactions between APIs and carriers within delivery systems would be expected on melting or through solvent depositions, this is not the case with less energetic mixing. Simple mixing of the two compounds resulted in a significant decrease in the differential scanning calorimetry (DSC) melting enthalpy for IB, indicating that approximately 30% of the crystalline content was disordered. This structural change was confirmed by broadening and intensity diminution of characteristic IB X-ray powder diffractometry (PXRD) peaks. Unexpectedly, the crystalline content of the drug continued to decrease upon storage under ambient conditions. The molecular environment of the mixture was further investigated using Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectroscopy. These data suggest that the primary interaction between these components of the physical mix is hydrogen bonding, with a secondary mechanism involving electrostatic/hydrophobic interactions through the IB benzene ring. Such interactions and subsequent loss of crystallinity could confer a dissolution rate advantage for IB. (C) 2006 Elsevier B.V. All rights reserved.