989 resultados para disease spread
Resumo:
Australia is unique as a populated continent in that canine rabies is exotic, with only one likely incursion in 1867. This is despite the presence of a widespread free-ranging dog population, which includes the naturalized dingo, feral domestic dogs and dingo-dog cross-breeds. To Australia's immediate north, rabies has recently spread within the Indonesian archipelago, with outbreaks occurring in historically free islands to the east including Bali, Flores, Ambon and the Tanimbar Islands. Australia depends on strict quarantine protocols to prevent importation of a rabid animal, but the risk of illegal animal movements by fishing and recreational vessels circumventing quarantine remains. Predicting where rabies will enter Australia is important, but understanding dog population dynamics and interactions, including contact rates in and around human populations, is essential for rabies preparedness. The interactions among and between Australia's large populations of wild, free-roaming and restrained domestic dogs require quantification for rabies incursions to be detected and controlled. The imminent risk of rabies breaching Australian borders makes the development of disease spread models that will assist in the deployment of cost-effective surveillance, improve preventive strategies and guide disease management protocols vitally important. Here, we critically review Australia's preparedness for rabies, discuss prevailing assumptions and models, identify knowledge deficits in free-roaming dog ecology relating to rabies maintenance and speculate on the likely consequences of endemic rabies for Australia.
Resumo:
Few studies have been conducted on the epidemiology of enteric infectious diseases of public health importance in communities along the United States-Mexico border, and these studies typically focus on bacterial and viral diseases. The epidemiology of intestinal helminth infections along the border has not recently been explored, and there are no published reports for El Paso and Ciudad Juarez, both of which are high traffic urban areas along the Texas-Mexico border. The purpose of this research project was to conduct a cross-sectional epidemiologic survey for enteric helminths of medical importance along the Texas-Mexico border region of El Paso and Ciudad Juarez and to evaluate risk factors for exposure to these parasites. In addition, an emphasis was placed on the zoonotic tapeworm, Taenia solium. This tapeworm is especially important in this region because of the increasing incidence of neurocysticercosis, a severe disease spread by carriers of intestinal T. solium. Fecal samples were collected from individuals of all ages in a population-based cross-sectional household survey and evaluated for the presence of helminth parasites using fecal flotations. In addition, a Taenia coproantigen enzyme linked immunosorbent assay (ELISA) was performed on each stool sample to identify tapeworm carriers. A standardized questionnaire was administered to identify risk factors and routes of exposure for enteric helminth infections with additional questions to assess risk factors specific for taeniasis. The actual prevalence of taeniasis along the Texas-Mexico border was unknown, and this is the first population-based study performed in this region. Flotations were performed on 395 samples and four (1%) were positive for helminths including Ascaris, hookworms and Taenia species. Immunodiagnostic testing demonstrated a prevalence of 2.9% (11/378) for taeniasis. Based on the case definition, a 3% (12/395) prevalence of taeniasis was detected in this area. In addition, statistical analyses indicate that residents of El Paso are 8.5 times more likely to be a tapeworm carrier compared to residents of Juarez (PR=8.5, 95% CI=2.35, 30.81). This finding has important implications in terms of planning effective health education campaigns to decrease the prevalence of enteric helminths in populations along the Texas-Mexico border. ^
Resumo:
`Candidatus Liberibacter asiaticus´ is the most prevalent Liberibacter sp. associated with huanglongbing (HLB) in Brazil. Within São Paulo state (SP), HLB has spread more rapidly to and reached higher incidence in regions with relatively mild (cooler) summer temperatures. This suggests that climate can influence disease spread and severity. ?Ca. L. asiaticus? titers on soft, immature leaves from infected ?Valencia? sweet orange plants exposed to different temperature regimes and adult Diaphorina citri fed for 48 h on these plants for ?Ca. L. asiaticus? acquisition were determined by quantitative polymerase chain reaction in two experiments. The first experiment included plants with three levels of infection, three incubation periods (IPs), and air temperatures favorable (14.6 to 28°C) and unfavorable (24 to 38°C) to ?Ca. L. asiaticus?. The second included plants with severe late-stage infections, 10 IPs (based on 3-day intervals over 27 days), and three air temperature regimes (12 to 24, 18 to 30, and 24 to 38°C). Overall, ?Ca. L. asiaticus? titers and the percentages of ?Ca. L. asiaticus?-positive psyllids were lower in plants maintained at the warmer temperature regime (24 to 38°C) than in plants maintained in the cooler regimes. The results suggest that the lower incidence and slower spread of ?Ca. L. asiaticus? to warmer regions of SP are related to the influence of ambient temperatures on titers of ?Ca. L. asiaticus? in leaves.
Resumo:
This thesis presents research into the space use of a specialist reedbed Passerine, the Bearded Reedling, or Bearded Tit, Panurus biarmicus, with a view to inform the conservation of this species and reedbeds as a whole. How a species uses space, and how space use changes between individuals or over time, can influence: the ability to forage and hunt effectively, breeding success, susceptibility to predation, genetic health, disease spread, robustness against environmental change and ultimately, colonisation or extinction. Thus, understanding the space use of animals can provide critical insight into ecological systems. Birds offer interesting models when studying animal space use, as, by being intrinsically mobile, many bird species can occupy multiple spatial scales. As a consequence of being completely dependent on patchy and ephemeral reedbed habitats, the Bearded Reedling, has a clustered, inhomogeneous distribution throughout its range. This drives the existence of distinct spatial scales upon which space use studies should be characterised. Distribution and movement within a single reedbed can be considered local-scale, while spatial processes between reedbeds can be considered wide-scale. Temporal processes may act upon both of these scales. For example, changing interactions with predators may influence nest positioning at a local-scale, while seasonal changes in resource requirements might drive processes such as migration at a wide-scale. The Bearded Reedling has a wide temperate breeding range, extending over much of Eurasia. On the IUCN’s red list, it is listed as ‘of least concern’, with an estimated European population between 240,000-480,000 breeding pairs. Despite its relatively favourable conservation status, its dependence on reedbed habitats drives a fragmented distribution, with populations being concentrated in small, isolated, stands. Over the last century reedbed wetlands have suffered rapid declines caused by drainage schemes undertaken to improve land for development or agriculture. Additionally, many remaining reed stands are subject to extensive commercial management to produce thatch or biofuel. Conversely, in other areas, management is driven by conservation motives which recognise the present threats to reedbeds, and aim to encourage the diversity of species associated with these habitats. As the Bearded Reedling is fundamentally linked to the quality and structure of a reed stand, understanding the space use of this species will offer information for the direct conservation of this specialist species, and for the effects of reedbed management as a whole. This thesis first presents studies of space use at a local-scale. All local-scale research is conducted at the Tay Reedbeds in eastern Scotland. Mist netting and bird ringing data are used within capture recapture models, which include an explicit spatial component, to gain insight into the abundance of the Bearded Reedling on the Tay. This abundance estimation approach suggests the Tay reedbeds are a stronghold for this species on the British Isles, and that, as a high latitude site, the Tay may have importance for range expansion. A combination of transect surveys and radio-tracking data are then used to establish the local-scale space use of this species during the breeding and autumnal seasons. These data are related to changes in the structure of reed caused by local management in the form of mosaic winter reed cutting. Results suggest that birds exploit young and cut patches of reed as foraging resources when they are available, and that old, unmanaged reed is critical for nesting and winter foraging. Further local-scale studies concern the spatial patterns in the nesting habits of this species. Mosaic reed cutting creates clear edges in a reedbed. Artificial nests placed in the Tay Reedbeds demonstrate increased nest predation rates closer to the edges of cut patches. Additionally, high predation rates become reduced as the cut reed re-grows, suggesting that reed cutting may increase accessibility of the stand to predators. As Bearded Reedling nests are uncommon and difficult to locate, the timing, site selection and structure of a sample of real nests from the Tay is then detailed. These demonstrate an early, and relatively rigid breeding onset in this species, the importance of dense, compacted reeds as nesting sites and a degree of flexibility in nest structure. Conservation efforts will also benefit from studies into wide-scale spatial processes. These may be important when establishing how colonisation events occur and when predicting the effects of climatic change. The Bearded Reedling has been traditionally considered a resident species which only occasionally undertakes wide-scale, between-reedbed, movements. Indeed, the ecology of this species suggests strict year round local residency to reedbeds, with distinct seasonal changes in diet allowing occupation of these habitats year round. The European ringing recoveries of this species, since the 1970s are investigated to better characterise the wider movements of specialist resident. These suggest residency in southern populations, but higher instances of movement than expected in more northerly regions. In these regions wide-scale movement patterns resemble those of partial regular migratory species. An understanding of local and wide-scale spatial processes can offer a strong foundation on which to build conservation strategies. This thesis aims to use studies of space use to provide this foundation for the Bearded Reedling and offer further insight into the ecology of reedbed habitats as a whole. The thesis concludes by proposing an effective strategy for the conservation management of reedbeds that will especially benefit the Bearded Reedling.
Resumo:
The objective of this study is to identify the relationship between population density and the initial stages of the spread of disease in a local population. This study proposes to concentrate on the question of how population density affects the distribution of the susceptible individuals in a local population and thus affects the spread of the disease, measles. Population density is measured by the average of the number of contacts with susceptible individuals by each individual in the population during a fixed-length time period. The term “contact with susceptible individuals” means sufficient contact between two people for the disease to pass from an infectious person to a susceptible person. The fixed-length time period is taken to be the average length of time an infected person is infectious without symptoms of the disease. For this study of measles, the time period will be seven days. ^ While much attention has been given to modeling the entire epidemic process of measles, attempts have not been made to study the characteristics of contact rates required to initiate an epidemic. This study explores the relationship between population density, given a specific herd immunity rate in the population, and initial rate of the spread of the disease by considering the underlying distribution of contacts with susceptibles by the individuals in the population. ^ This study does not seek to model an entire measles epidemic, but to model the above stated relationship for the local population within which the first infective person is introduced. This study describes the mathematical relationship between population density parameters and contact distribution parameters. ^ The results are displayed in graphs that show the effects of different population densities on the spread of disease. The results support the idea that the number of new infectives is strongly related to the distribution of susceptible contacts. The results also show large differences in the epidemic measures between populations with densities equal to four versus three. ^
Resumo:
Includes bibliographical references and index.
Resumo:
To test the hypothesis that the distribution of the pathology in variant Creutzfeldt-Jakob disease (vCJD) represents haematogenous spread of the disease, we studied the spatial correlation between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles in the cerebral cortex, hippocampus, dentate gyrus, and cerebellum of 11 cases of the disease. In the majority of areas, there were no significant spatial correlations between either the vacuolation or the diffuse type of PrP deposit and the blood vessels. By contrast, a consistent pattern of spatial correlation was observed between the florid PrP deposits and blood vessels mainly in the cerebral cortex. The frequency of positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower laminae. Hence, with the exception of the florid deposits, the data do not demonstrate a spatial relationship between the pathological features of vCJD and blood vessels. The spatial correlation of the florid deposits and blood vessels may be attributable to factors associated with the blood vessels that promote the aggregation of PrP to form a condensed core rather than reflecting the haematogenous spread of the disease. © 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
BACKGROUND: Traditionally, epidemiologists have considered electrification to be a positive factor. In fact, electrification and plumbing are typical initiatives that represent the integration of an isolated population into modern society, ensuring the control of pathogens and promoting public health. Nonetheless, electrification is always accompanied by night lighting that attracts insect vectors and changes people's behavior. Although this may lead to new modes of infection and increased transmission of insect-borne diseases, epidemiologists rarely consider the role of night lighting in their surveys. OBJECTIVE: We reviewed the epidemiological evidence concerning the role of lighting in the spread of vector-borne diseases to encourage other researchers to consider it in future studies. DISCUSSION: We present three infectious vector-borne diseases-Chagas, leishmaniasis, and malaria-and discuss evidence that suggests that the use of artificial lighting results in behavioral changes among human populations and changes in the prevalence of vector species and in the modes of transmission. CONCLUSION: Despite a surprising lack of studies, existing evidence supports our hypothesis that artificial lighting leads to a higher risk of infection from vector-borne diseases. We believe that this is related not only to the simple attraction of traditional vectors to light sources but also to changes in the behavior of both humans and insects that result in new modes of disease transmission. Considering the ongoing expansion of night lighting in developing countries, additional research on this subject is urgently needed.
Resumo:
There are several ways of controlling the propagation of a contagious disease. For instance, to reduce the spreading of an airborne infection, individuals can be encouraged to remain in their homes and/or to wear face masks outside their domiciles. However, when a limited amount of masks is available, who should use them: the susceptible subjects, the infective persons or both populations? Here we employ susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations and probabilistic cellular automata in order to investigate how the deletion of links in the random complex network representing the social contacts among individuals affects the dynamics of a contagious disease. The inspiration for this study comes from recent discussions about the impact of measures usually recommended by health public organizations for preventing the propagation of the swine influenza A (H1N1) virus. Our answer to this question can be valid for other eco-epidemiological systems. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
A virulent strain of Wolbachia has recently been identified in Drosophila that drastically reduces adult lifespan. It has been proposed that this phenotype might be introduced into insect disease vector populations to reduce pathogen transmission. Here we model the requirements for spread of such an agent and the associated reduction in disease transmission. First, a simulation of mosquito population age structure was used to describe the age distribution of mosquitoes transmitting dengue virus. Second, given varying levels of cytoplasmic incompatibility and fecundity effect, the maximum possible longevity reduction that would allow Wolbachia to invade was obtained. Finally, the two models were combined to estimate the reduction in disease transmission according to different introduction frequencies. With strong CI and limited effect of fecundity, an introduction of Wolbachia with an initial frequency of 0.4 could result in a 60–80% reduction of transmitting mosquitoes. Greater reductions are possible at higher initial release rates.
Resumo:
The possibility of controlling vector-borne disease through the development and release of transgenic insect vectors has recently gained popular support and is being actively pursued by a number of research laboratories around the world. Several technical problems must be solved before such a strategy could be implemented: genes encoding refractory traits (traits that render the insect unable to transmit the pathogen) must be identified, a transformation system for important vector species has to be developed, and a strategy to spread the refractory trait into natural vector populations must be designed. Recent advances in this field of research make it seem likely that this technology will be available in the near future. In this paper we review recent progress in this area as well as argue that care should be taken in selecting the most appropriate disease system with which to first attempt this form of intervention. Much attention is currently being given to the application of this technology to the control of malaria, transmitted by Anopheles gambiae in Africa. While malaria is undoubtedly the most important vector-borne disease in the world and its control should remain an important goal, we maintain that the complex epidemiology of malaria together with the intense transmission rates in Africa may make it unsuitable for the first application of this technology. Diseases such as African trypanosomiasis, transmitted by the tsetse fly, or unstable malaria in India may provide more appropriate initial targets to evaluate the potential of this form of intervention.
Resumo:
Liver samples from rabbits killed by RHDV, collected from five States in Australia in 1996 and 1997 were analysed by RT-PCR. A 398 bp fragment of the capsid protein (VP60) gene was amplified by PCR and directly sequenced. The alignment of the nucleotide and amino acid sequences and their comparison with the original strain of the virus released in Australia indicated genetic changes after two years have been small with 98.2% to 100% identity. The constructed phylogenetic tree suggests slight differences in nucleotide substitutions in various States but there is no clear evidence of clustering of sequences according to their geographic origin. In practical terms, sequencing of viral RNA provides a means of testing the efficacy of further releases and subsequent spread of the virus if such a strategy is employed as a means of enhancing RHD as a biological control of the wild rabbit in Australia.
Resumo:
Ross River virus (RRV) is a fascinating, important arbovirus that is endemic and enzootic in Australia and Papua New Guinea and was epidemic in the South Pacific in 1979 and 1980. Infection with RRV may cause disease in humans, typically presenting as peripheral polyarthralgia or arthritis, sometimes with fever and rash. RRV disease notificatïons in Australia average 5,000 per year. The first well-described outbreak occurred in 1928. During World War II there were more outbreaks, and the name epidemic polyarthritis was applied. During a 1956 outbreak, epidemic polyarthritis was linked serologically to a group A arbovirus (Alphavirus). The virus was subsequently isolated from Aedes vigilax mosquitoes in 1963 and then from epidemic polyarthritis patients. We review the literature on the evolutionary biology of RRV, immune response to infection, pathogenesis, serologic diagnosis, disease manifestations, the extraordinary variety of vertebrate hosts, mosquito vectors, and transmission cycles, antibody prevalence, epidemiology of asymptomatic and symptomatic human infection, infection risks, and public health impact. RRV arthritis is due to joint infection, and treatment is currently based on empirical anti-inflammatory regimens. Further research on pathogenesis may improve understanding of the natural history of this disease and lead to new treatment strategies. The burden of morbidity is considerable, and the virus could spread to other countries. To justify and design preventive programs, we need accurate data on economic costs and better understanding of transmission and behavioral and environmental risks.