385 resultados para dipolar dephasing
Resumo:
This research was directed mainly towards the investigation of the reactions of allylic amineimides. The work can be divided into two main sections. Section 1 of the thesis deals mainly with thermolysis studies of amineimides. Sections 1a and 1b represent a comprehensive survey of amineimide literature up to 1971. N-A1ly1-N,N-dirnethylarnine-benzirnide was prepared and rearranged at 1400 to l-allyl-1-benzoyl-2,2-dimethylhydrazine. A tentative mechanism involving an initial migration to the carbonyl oxygen was disproved by incorporating the amineimide system into a five-membered ring. N,N~Dimethyl-N-propargylamine-benzimidedid not rearrange on heating; but the hydrobromide, on heating, disproportionated to give 1-benzoyl~2,2,2-trimethylhydraziniumbromide and I-benzoyl-2,2~ dimethylhydrazine. l-Ally'l--l, I-dimethyl-2-benzoy-lhydrazinium bromide and 1~benzoy-1-2,2, 2-trimethy-lhydrazinium iodide both disproportionated to give l~benzoyl-2,2-dimethylhydrazine. Section 1 concludes with a discussion of the mechanisms of ally'lic migrations in amineimides proposed by J. E. Baldwin. Section 2 deals with the formation of five-membered heterocyclic compounds from amineimides by bromination. 1,1-Dimethyl-2benzoyl- 4-bromopyrazolidinium bromide was formed from N-allyl-N,Ndime thy-lamtne-benzimide , 1,1-dimethyl-2-benzoyl-4-bromopyrazol-3enium bromide from N,N~dimethyl-N-propargylamine~benzimidevia the unusual acetylenic "bromonium" ion. Hydrogenolysis of both heterocyclic compounds gave the same product. The preparation was extended by forming 2,2-dimethyl-4-bromoisoxazolinium bromide from N-allylN, N-dimethylamine-N-oxide. Sections 3 and 4 cover a number of unsuccessful attempts to synthesise other amineimides and l,2-dipolar species.
Resumo:
In the thesis entitled " Novel Strategies for Heterocyclic Constructions via 1 ,4-Dipolar Intermediates"Synthesis of a complex organic molecules essentially involves the formation of carbon-carbon and carbon-heteroatom bonds. Various synthetic methods are available for these processes involving ionic, pericyclic and radical reactions. Among the pericyclic reactions, dipolar cycloaddition reactions, introduced by Huisgen, have emerged as a very powerful tool for heterocyclic construction. Heterocyclic compounds remain an important class of organic molecules due to their natural abundance and remarkable biological activity, thus constituting an intergral part of pharmaceutical industry. In this respect, developing newer synthetic methodology for heterocyclic construction has been an area of immense interest. In recent years, 1,3-dipolar cycloaddition reactions proved to be efficient routes to a wide variety of five membered heterocycles, as attested by their application in the total synthesis of various complex organic molecules. However, the potential application of similar 1,4- dipolar cycloaddition reactions for the construction of six memebered heterocycles remained underexploited. In this context, a systematic investigation of the reactivity of 1,4-dipoles generated from nitrogen heterocycles (pyridine and its analogues) and dimethyl acetylenedicarboxy!ate (DMAD) towards various dipolarophiles has been carried out and the results are embodied.
Resumo:
The thesis entitled novel 1,3-dipolar cycloaddition reactions of acyclic carbonyl ylides and related chemistry embodies the results of the investigations carried out to explore the reactivity of acyclic carbonyl ylides,generated by the reaction of dicarbomethoxy carbine and aldehydes towards dipolarophiles such as activated styrenes,1,2-and 1,4-quinones. In conclusion ,we have explored the reactivity pattern of acyclic carbonyl ylides derived from dicarbomethoxycarbene and aldehyde towards activated styrenes with a view to develop a stereoselective synthesis of highly substituted tetrahydrofuran derivatives. It was also found that the ylide could be trapped by various 1,2-and 1,4-diones to form dioxolane derivatives. It is noteworthy that the cycloaddition is highly region- and stereoselective. With isatins the ylide preferentially adds to the more electrone deficient carbonyl group making it regiospecific. Hetrocyclic compounds are of pivotal importance in organic chemistry, and enormous efforts have been devoted to develop new methodologies for their synthesis. It is noteworthy in this context that, 1,3-dipolar cycloaddition reaction,otherwise called Huisgen reaction, constitutes one of the most efficient methods for the synthesis of five membered heterocycles. Among the various dipoles, carbonyl ylides have received substiancial attention in recent years largely due to their utility in the synthesis of a wide range of oxygen hetrocycles, which are often found as structural subunits of many bioactive natural products.
Resumo:
We report herein, the first generation of unsymmetrical ketone-derived chiral stabilized azomethine ylides. Intrairiolecular and intermolecular cycloaddition strategies have been utilized to synthesize both an enantiornerically pure bicyclic proline derivative and an enantionierically pure beta-hydroxy-alpha-amino acid.
Resumo:
N-Propynoyl (5R)-5-phenylmorpholin-2-one undergoes nonregioselective cycloaddition with aromatic azides to furnish mixtures of the corresponding triazoles, whereas N-propenoyl (5R)-5-phenylmorpholin-2-one reacts to furnish the corresponding diastereoisomerically pure aziridines in moderate to good yields, presumably via the intermediate triazolines.
Resumo:
The chiral stabilised azomethine ylide formed from condensation of the dimethyl acetal of acetone with (5S)-5-phenylmorpholinone undergoes stereoselective exo-cycloaddition reactions with a range of doubly and singly activated dipolarophiles when generated in the presence of excess (MgBr2OEt2)-O-.. The cycloadducts can be degraded to yield enantiomerically pure proline derivatives.
Resumo:
Dipolar streamers are coronal structures formed by open solar flux converging from coronal holes of opposite polarity. Thus the dipolar streamer belt traces the coronal foot print of the heliospheric current sheet (HCS), and it is strongly associated with the origin of slow solar wind. Pseudostreamers, on the other hand, separate converging regions of open solar flux from coronal holes of the same polarity and do not contain current sheets. They have recently received a great deal of interest as a possible additional source of slow solar wind. Here we add to that growing body of work by using the potential-field source-surface model to determine the occurrence and location of dipolar and pseudostreamers over the last three solar cycles. In addition to providing new information about pseudostreamer morphology, the results help explain why the observations taken during the first Ulysses perihelion pass in 1995 showed noncoincidence between dipolar streamer belt and the locus of slowest flow. We find that Carrington rotation averages of the heliographic latitudes of dipolar and pseudostreamer belts are systematically shifted away from the equator, alternately in opposite directions, with a weak solar cycle periodicity, thus keeping slow wind from the web of combined streamer belts approximately symmetric about the equator. The largest separation of dipolar and pseudostreamer belts occurred close to the Ulysses pass, allowing a unique opportunity to see that slow wind from pseudostreamer belts north of the southward-displaced dipolar belt was responsible for the noncoincident pattern.
Resumo:
In this paper we investigate the equilibrium properties of magnetic dipolar (ferro-) fluids and discuss finite-size effects originating from the use of different boundary conditions in computer simulations. Both periodic boundary conditions and a finite spherical box are studied. We demonstrate that periodic boundary conditions and subsequent use of Ewald sum to account for the long-range dipolar interactions lead to a much faster convergence (in terms of the number of investigated dipolar particles) of the magnetization curve and the initial susceptibility to their thermodynamic limits. Another unwanted effect of the simulations in a finite spherical box geometry is a considerable sensitivity to the container size. We further investigate the influence of the surface term in the Ewald sum-that is, due to the surrounding continuum with magnetic permeability mu(BC)-on the convergence properties of our observables and on the final results. The two different ways of evaluating the initial susceptibility, i.e., (1) by the magnetization response of the system to an applied field and (2) by the zero-field fluctuation of the mean-square dipole moment of the system, are compared in terms of speed and accuracy.
Resumo:
Theoretical estimates for the cutoff errors in the Ewald summation method for dipolar systems are derived. Absolute errors in the total energy, forces and torques, both for the real and reciprocal space parts, are considered. The applicability of the estimates is tested and confirmed in several numerical examples. We demonstrate that these estimates can be used easily in determining the optimal parameters of the dipolar Ewald summation in the sense that they minimize the computation time for a predefined, user set, accuracy.
Resumo:
Langevin dynamics simulations are used to investigate the equilibrium magnetization properties and structure of magnetic dipolar fluids. The influence of using different boundary conditions are systematically studied. Simulation results on the initial susceptibility and magnetization curves are compared with theoretical predictions. The effect of particle aggregation is discussed in detail by performing a cluster analysis of the microstructure.
Resumo:
We present a site-resolved study of stow (ms to s) motions in a protein in the solid (microcrystalline) state performed with the use of a modified version of the centerband-only detection of exchange (CODEX) NMR experiment. CODEX was originally based on measuring changes in molecular orientation by means of the chemical shift anisotropy (CSA) tensor, and in our modification, angular reorientations of internuclear vectors are observed. The experiment was applied to the study of stow (15)N-(1)H motions of the SH3 domain of chicken a-spectrin. The protein was perdeuterated with partial back-exchange of protons at labile sites. This allowed indirect (proton) detection of (15)N nuclei and thus a significant enhancement of sensitivity. The diluted proton system also made negligible proton-driven spin diffusion between (15)N nuclei, which interferes with the molecular exchange (motion) and hampers the acquisition of dynamic parameters. The experiment has shown that approximately half of the peaks in the 2D (15)N-(1)H correlation spectrum exhibit exchange in a different extent. The correlation time of the slow motion for most peaks is 1 to 3 s. This is the first NMR study of the internal dynamics of proteins in the solid state on the millisecond to second time scale with site-specific spectral resolution that provides both time-scale and geometry information about molecular motions.
Resumo:
We propose a coherent beam splitter for polarized heteronuclear molecules based on a stimulated Raman adiabatic passage scheme that uses a tripod linkage of electrotranslational molecular states. We show that for strongly polarized molecules the rotational dynamics imposes significantly larger Rabi frequencies than would otherwise be expected, but within this limitation, a full transfer of the molecules to two counterpropagating ground-state wave packets is possible.