951 resultados para digital elevation model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of the CryoSat Cal/Val activities and the pre-site survey for an ice core drilling contributing to the International Partnerships in Ice Core Sciences (IPICS), ground based kinematic GPS measurements were conducted in early 2007 in the vicinity of the German overwintering station Neumayer (8.25° W and 70.65° S). The investigated area comprises the regions of the ice tongues Halvfarryggen and Søråsen, which rise from the Ekströmisen to a maximum of about 760 m surface elevation, and have an areal extent of about 100 km x 50 km each. Available digital elevation models (DEMs) from radar altimetry and the Antarctic Digital Database show elevation differences of up to hundreds of meters in this region, which necessitated an accurate survey of the conditions on-site. An improved DEM of the Ekströmisen surroundings is derived by a combination of highly accurate ground based GPS measurements, satellite derived laser altimetry data (ICESat), airborne radar altimetry (ARA), and radio echo sounding (RES). The DEM presented here achieves a vertical accuracy of about 1.3 m and can be used for improved ice dynamic modeling and mass balance studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sight distance plays an important role in road traffic safety. Two types of Digital Elevation Models (DEMs) are utilized for the estimation of available sight distance in roads: Digital Terrain Models (DTMs) and Digital Surface Models (DSMs). DTMs, which represent the bare ground surface, are commonly used to determine available sight distance at the design stage. Additionally, the use of DSMs provides further information about elements by the roadsides such as trees, buildings, walls or even traffic signals which may reduce available sight distance. This document analyses the influence of three classes of DEMs in available sight distance estimation. For this purpose, diverse roads within the Region of Madrid (Spain) have been studied using software based on geographic information systems. The study evidences the influence of using each DEM in the outcome as well as the pros and cons of using each model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Geographic Information System (GIS) was used to model datasets of Leyte Island, the Philippines, to identify land which was suitable for a forest extension program on the island. The datasets were modelled to provide maps of the distance of land from cities and towns, land which was a suitable elevation and slope for smallholder forestry and land of various soil types. An expert group was used to assign numeric site suitabilities to the soil types and maps of site suitability were used to assist the selection of municipalities for the provision of extension assistance to smallholders. Modelling of the datasets was facilitated by recent developments of the ArcGIS® suite of computer programs and derivation of elevation and slope was assisted by the availability of digital elevation models (DEM) produced by the Shuttle Radar Topography (SRTM) mission. The usefulness of GIS software as a decision support tool for small-scale forestry extension programs is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every year, debris flows cause huge damage in mountainous areas. Due to population pressure in hazardous zones, the socio-economic impact is much higher than in the past. Therefore, the development of indicative susceptibility hazard maps is of primary importance, particularly in developing countries. However, the complexity of the phenomenon and the variability of local controlling factors limit the use of processbased models for a first assessment. A debris flow model has been developed for regional susceptibility assessments using digital elevation model (DEM) with a GIS-based approach.. The automatic identification of source areas and the estimation of debris flow spreading, based on GIS tools, provide a substantial basis for a preliminary susceptibility assessment at a regional scale. One of the main advantages of this model is its workability. In fact, everything is open to the user, from the data choice to the selection of the algorithms and their parameters. The Flow-R model was tested in three different contexts: two in Switzerland and one in Pakistan, for indicative susceptibility hazard mapping. It was shown that the quality of the DEM is the most important parameter to obtain reliable results for propagation, but also to identify the potential debris flows sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Detection, analysis and monitoring of slope movements by high-resolution digital elevation modelsSlope movements, such as rockfalls, rockslides, shallow landslides or debris flows, are frequent in many mountainous areas. These natural hazards endanger the inhabitants and infrastructures making it necessary to assess the hazard and risk caused by these phenomena. This PhD thesis explores various approaches using digital elevation models (DEMs) - and particularly high-resolution DEMs created by aerial or terrestrial laser scanning (TLS) - that contribute to the assessment of slope movement hazard at regional and local scales.The regional detection of areas prone to rockfalls and large rockslides uses different morphologic criteria or geometric instability factors derived from DEMs, i.e. the steepness of the slope, the presence of discontinuities, which enable a sliding mechanism, and the denudation potential. The combination of these factors leads to a map of susceptibility to rockfall initiation that is in good agreement with field studies as shown with the example of the Little Mill Campground area (Utah, USA). Another case study in the Illgraben catchment in the Swiss Alps highlighted the link between areas with a high denudation potential and actual rockfall areas.Techniques for a detailed analysis and characterization of slope movements based on high-resolution DEMs have been developed for specific, localized sites, i.e. ancient slide scars, present active instabilities or potential slope instabilities. The analysis of the site's characteristics mainly focuses on rock slopes and includes structural analyses (orientation of discontinuities); estimation of spacing, persistence and roughness of discontinuities; failure mechanisms based on the structural setting; and volume calculations. For the volume estimation a new 3D approach was tested to reconstruct the topography before a landslide or to construct the basal failure surface of an active or potential instability. The rockslides at Åknes, Tafjord and Rundefjellet in western Norway were principally used as study sites to develop and test the different techniques.The monitoring of slope instabilities investigated in this PhD thesis is essentially based on multitemporal (or sequential) high-resolution DEMs, in particular sequential point clouds acquired by TLS. The changes in the topography due to slope movements can be detected and quantified by sequential TLS datasets, notably by shortest distance comparisons revealing the 3D slope movements over the entire region of interest. A detailed analysis of rock slope movements is based on the affine transformation between an initial and a final state of the rock mass and its decomposition into translational and rotational movements. Monitoring using TLS was very successful on the fast-moving Eiger rockslide in the Swiss Alps, but also on the active rockslides of Åknes and Nordnesfjellet (northern Norway). One of the main achievements on the Eiger and Aknes rockslides is to combine the site's morphology and structural setting with the measured slope movements to produce coherent instability models. Both case studies also highlighted a strong control of the structures in the rock mass on the sliding directions. TLS was also used to monitor slope movements in soils, such as landslides in sensitive clays in Québec (Canada), shallow landslides on river banks (Sorge River, Switzerland) and a debris flow channel (Illgraben).The PhD thesis underlines the broad uses of high-resolution DEMs and especially of TLS in the detection, analysis and monitoring of slope movements. Future studies should explore in more depth the different techniques and approaches developed and used in this PhD, improve them and better integrate the findings in current hazard assessment practices and in slope stability models.Résumé Détection, analyse et surveillance de mouvements de versant à l'aide de modèles numériques de terrain de haute résolutionDes mouvements de versant, tels que des chutes de blocs, glissements de terrain ou laves torrentielles, sont fréquents dans des régions montagneuses et mettent en danger les habitants et les infrastructures ce qui rend nécessaire d'évaluer le danger et le risque causé par ces phénomènes naturels. Ce travail de thèse explore diverses approches qui utilisent des modèles numériques de terrain (MNT) et surtout des MNT de haute résolution créés par scanner laser terrestre (SLT) ou aérien - et qui contribuent à l'évaluation du danger de mouvements de versant à l'échelle régionale et locale.La détection régionale de zones propices aux chutes de blocs ou aux éboulements utilise plusieurs critères morphologiques dérivés d'un MNT, tels que la pente, la présence de discontinuités qui permettent un mécanisme de glissement ou le potentiel de dénudation. La combinaison de ces facteurs d'instabilité mène vers une carte de susceptibilité aux chutes de blocs qui est en accord avec des travaux de terrain comme démontré avec l'exemple du Little Mill Campground (Utah, États-Unis). Un autre cas d'étude - l'Illgraben dans les Alpes valaisannes - a mis en évidence le lien entre les zones à fort potentiel de dénudation et les sources effectives de chutes de blocs et d'éboulements.Des techniques pour l'analyse et la caractérisation détaillée de mouvements de versant basées sur des MNT de haute résolution ont été développées pour des sites spécifiques et localisés, comme par exemple des cicatrices d'anciens éboulements et des instabilités actives ou potentielles. Cette analyse se focalise principalement sur des pentes rocheuses et comprend l'analyse structurale (orientation des discontinuités); l'estimation de l'espacement, la persistance et la rugosité des discontinuités; l'établissement des mécanismes de rupture; et le calcul de volumes. Pour cela une nouvelle approche a été testée en rétablissant la topographie antérieure au glissement ou en construisant la surface de rupture d'instabilités actuelles ou potentielles. Les glissements rocheux d'Åknes, Tafjord et Rundefjellet en Norvège ont été surtout utilisés comme cas d'étude pour développer et tester les diverses approches. La surveillance d'instabilités de versant effectuée dans cette thèse de doctorat est essentiellement basée sur des MNT de haute résolution multi-temporels (ou séquentiels), en particulier des nuages de points séquentiels acquis par SLT. Les changements topographiques dus aux mouvements de versant peuvent être détectés et quantifiés sur l'ensemble d'un glissement, notamment par comparaisons des distances les plus courtes entre deux nuages de points. L'analyse détaillée des mouvements est basée sur la transformation affine entre la position initiale et finale d'un bloc et sa décomposition en mouvements translationnels et rotationnels. La surveillance par SLT a démontré son potentiel avec l'effondrement d'un pan de l'Eiger dans les Alpes suisses, mais aussi aux glissements rocheux d'Aknes et Nordnesfjellet en Norvège. Une des principales avancées à l'Eiger et à Aknes est la création de modèles d'instabilité cohérents en combinant la morphologie et l'agencement structural des sites avec les mesures de déplacements. Ces deux cas d'étude ont aussi démontré le fort contrôle des structures existantes dans le massif rocheux sur les directions de glissement. Le SLT a également été utilisé pour surveiller des glissements dans des terrains meubles comme dans les argiles sensibles au Québec (Canada), sur les berges de la rivière Sorge en Suisse et dans le chenal à laves torrentielles de l'Illgraben.Cette thèse de doctorat souligne le vaste champ d'applications des MNT de haute résolution et particulièrement du SLT dans la détection, l'analyse et la surveillance des mouvements de versant. Des études futures devraient explorer plus en profondeur les différentes techniques et approches développées, les améliorer et mieux les intégrer dans des pratiques actuelles d'analyse de danger et surtout dans la modélisation de stabilité des versants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative terrain attributes such as slope or aspect in the context of species distribution modelling. However, DEM-derived variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their ecological relevancemust be assessed for different spatial resolutions. 2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0.5 m, we generated DEM-derived variables at 1, 2 and 4 mspatial resolutions, applying a Gaussian Pyramid. Their associations with local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture) as well as ecological indicators derived fromspecies composition, were assessed with multivariate generalized linearmodels (GLM) andmixed models (GLMM). 3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to slope, aspect and curvature, the underused wetness and ruggedness indices modelledmeasured ambient humidity and soilmoisture, respectively. Remarkably, spatial resolution of VHR DEM-derived variables had a significant influence on models' strength, with coefficients of determination decreasing with coarser resolutions or showing a local optimumwith a 2 mresolution, depending on the variable considered. 4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measurements for evolutionary ecology studies at a local scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to compare the hydrographically conditioned digital elevation models (HCDEMs) generated from data of VNIR (Visible Near Infrared) sensor of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), of SRTM (Shuttle Radar Topography Mission) and topographical maps from IBGE in a scale of 1:50,000, processed in the Geographical Information System (GIS), aiming the morphometric characterization of watersheds. It was taken as basis the Sub-basin of São Bartolomeu River, obtaining morphometric characteristics from HCDEMs. Root Mean Square Error (RMSE) and cross validation were the statistics indexes used to evaluate the quality of HCDEMs. The percentage differences in the morphometric parameters obtained from these three different data sets were less than 10%, except for the mean slope (21%). In general, it was observed a good agreement between HCDEMs generated from remote sensing data and IBGE maps. The result of HCDEM ASTER was slightly higher than that from HCDEM SRTM. The HCDEM ASTER was more accurate than the HCDEM SRTM in basins with high altitudes and rugged terrain, by presenting frequency altimetry nearest to HCDEM IBGE, considered standard in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although accuracy of digital elevation models (DEMs) can be quantified and measured in different ways, each is influenced by three main factors: terrain character, sampling strategy and interpolation method. These parameters, and their interaction, are discussed. The generation of DEMs from digitised contours is emphasised because this is the major source of DEMs, particularly within member countries of OEEPE. Such DEMs often exhibit unwelcome artifacts, depending on the interpolation method employed. The origin and magnitude of these effects and how they can be reduced to improve the accuracy of the DEMs are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new digital atlas of the geomorphology of the Namib Sand Sea in southern Africa has been developed. This atlas incorporates a number of databases including a digital elevation model (ASTER and SRTM) and other remote sensing databases that cover climate (ERA-40) and vegetation (PAL and GIMMS). A map of dune types in the Namib Sand Sea has been derived from Landsat and CNES/SPOT imagery. The atlas also includes a collation of geochronometric dates, largely derived from luminescence techniques, and a bibliographic survey of the research literature on the geomorphology of the Namib dune system. Together these databases provide valuable information that can be used as a starting point for tackling important questions about the development of the Namib and other sand seas in the past, present and future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term ecosystem has been used to describe complex interactions between living organisms and the physical world. The principles underlying ecosystems can also be applied to complex human interactions in the digital world. As internet technologies make an increasing contribution to teaching and learning practice in higher education, the principles of digital ecosystems may help us understand how to maximise technology to benefit active, self-regulated learning especially among groups of learners. Here, feedback on student learning is presented within a conceptual digital ecosystems model of learning. Additionally, we have developed a Web 2.0-based system, called ASSET, which incorporates multimedia and social networking features to deliver assessment feedback within the functionality of the digital ecosystems model. Both the digital ecosystems model and the ASSET system are described and their implications for enhancing feedback on student learning are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new method to calculate sky view factors (SVFs) from high resolution urban digital elevation models using a shadow casting algorithm. By utilizing weighted annuli to derive SVF from hemispherical images, the distance light source positions can be predefined and uniformly spread over the whole hemisphere, whereas another method applies a random set of light source positions with a cosine-weighted distribution of sun altitude angles. The 2 methods have similar results based on a large number of SVF images. However, when comparing variations at pixel level between an image generated using the new method presented in this paper with the image from the random method, anisotropic patterns occur. The absolute mean difference between the 2 methods is 0.002 ranging up to 0.040. The maximum difference can be as much as 0.122. Since SVF is a geometrically derived parameter, the anisotropic errors created by the random method must be considered as significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.