925 resultados para differential heats of adsorption
Resumo:
Oscillatory entrainment to the speech signal is important for language processing, but has not yet been studied in developmental disorders of language. Developmental dyslexia, a difficulty in acquiring efficient reading skills linked to difficulties with phonology (the sound structure of language), has been associated with behavioural entrainment deficits. It has been proposed that the phonological ‘deficit’ that characterises dyslexia across languages is related to impaired auditory entrainment to speech at lower frequencies via neuroelectric oscillations (<10 Hz, ‘temporal sampling theory’). Impaired entrainment to temporal modulations at lower frequencies would affect the recovery of the prosodic and syllabic structure of speech. Here we investigated event-related oscillatory EEG activity and contingent negative variation (CNV) to auditory rhythmic tone streams delivered at frequencies within the delta band (2 Hz, 1.5 Hz), relevant to sampling stressed syllables in speech. Given prior behavioural entrainment findings at these rates, we predicted functionally atypical entrainment of delta oscillations in dyslexia. Participants performed a rhythmic expectancy task, detecting occasional white noise targets interspersed with tones occurring regularly at rates of 2 Hz or 1.5 Hz. Both groups showed significant entrainment of delta oscillations to the rhythmic stimulus stream, however the strength of inter-trial delta phase coherence (ITC, ‘phase locking’) and the CNV were both significantly weaker in dyslexics, suggestive of weaker entrainment and less preparatory brain activity. Both ITC strength and CNV amplitude were significantly related to individual differences in language processing and reading. Additionally, the instantaneous phase of prestimulus delta oscillation predicted behavioural responding (response time) for control participants only.
Resumo:
Clusterin (CLU) was initially reported as an androgen-repressed gene which is now shown to be an androgen-regulated ATP-independent cytoprotective molecular chaperone. CLU binds to a wide variety of client proteins to potently inhibit stress-induced protein aggregation and chaperone or stabilise conformations of proteins at times of cell stress. CLU is an enigmatic protein, being ascribed both pro- and anti-apoptotic roles. Recent evidence has shown that both secreted (sCLU) and nuclear (nCLU) isoforms can be produced, and that protein function is dependent on the sub-cellular localisation. We and others have shown that sCLU is cytoprotective, while nCLU is pro-apoptotic. It now seems likely that the apparently dichotomous functions of CLU result from the expression of different but related CLU isoforms and splice variants, and that cell survival depends in part on the relative expression of pro- versus anti-apoptotic CLU proteins. In cancer cells, increased sCLU expression is associated with increased resistance to apoptotic triggers and treatment resistance. CLU is a stress-induced protein upregulated after apoptotic triggers like androgen ablation and chemotherapy. Treatment strategies targeting stress-associated increases in sCLU expression enhance treatment-induced apoptosis and delay the emergence of androgen independence. Differential regulation of CLU isoforms and splice variants by androgens may be a pathway whereby cancer cells develop treatment resistance and evade apoptosis.
Resumo:
BACKGROUND Prostate cancer disseminates to regional lymph nodes, however the molecular mechanisms responsible for lymph node metastasis are poorly understood. The vascular endothelial growth factor (VEGF) ligand and receptor family have been implicated in the growth and spread of prostate cancer via activation of the blood vasculature and lymphatic systems. The purpose of this study was to comprehensively examine the expression pattern of VEGF ligands and receptors in the glandular epithelium, stroma, lymphatic vasculature and blood vessels in prostate cancer. METHODS The localization of VEGF-A, VEGF-C, VEGF-D, VEGF receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 was examined in cancerous and adjacent benign prostate tissue from 52 subjects representing various grades of prostate cancer. RESULTS Except for VEGFR-2, extensive staining was observed for all ligands and receptors in the prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was higher in tumor tissue compared to benign tissue. VEGF-D and VEGFR-3 expression was significantly higher in benign tissue compared to tumor in the stroma and the endothelium of lymphatic and blood vessels. In addition, the frequency of lymphatic vessels, but not blood vessels, was lower in tumor tissue compared with benign tissue. CONCLUSIONS These results suggest that activation of VEGFR-1 by VEGF-A within the carcinoma, and activation of lymphatic endothelial cell VEGFR-3 by VEGF-D within the adjacent benign stroma may be important signaling mechanisms involved in the progression and subsequent metastatic spread of prostate cancer. Thus inhibition of these pathways may contribute to therapeutic strategies for the management of prostate cancer.
Resumo:
Failure to efficiently induce apoptosis contributes to cisplatin resistance in non-small-cell lung cancer (NSCLC). Although BCL-2-associated X protein (BAX) and BCL-2 antagonist killer (BAK) are critical regulators of the mitochondrial apoptosis pathway, their requirement has not been robustly established in relation to cisplatin. Here, we show that cisplatin can efficiently bypass mitochondrial apoptosis block caused by loss of BAX and BAK, via activation of the extrinsic death receptor pathway in some model cell lines. Apoptosis resistance following cisplatin can only be observed when both extrinsic and intrinsic pathways are blocked, consistent with redundancy between mitochondrial and death receptor pathways in cisplatin-induced apoptosis. In H460 NSCLC cells, caspase-8 cleavage was shown to be induced by cisplatin and is dependent on death receptor 4, death receptor 5, Fas-associated protein with death domain, acid sphingomyelinase and ceramide synthesis. In contrast, cisplatin-resistant cells fail to activate caspase-8 via this pathway despite conserving sensitivity to death ligand-driven activation. Accordingly, caspase-8 activation block acquired during cisplatin resistance, can be bypassed by death receptor agonism.
Resumo:
In this paper we present truncated differential analysis of reduced-round LBlock by computing the differential distribution of every nibble of the state. LLR statistical test is used as a tool to apply the distinguishing and key-recovery attacks. To build the distinguisher, all possible differences are traced through the cipher and the truncated differential probability distribution is determined for every output nibble. We concatenate additional rounds to the beginning and end of the truncated differential distribution to apply the key-recovery attack. By exploiting properties of the key schedule, we obtain a large overlap of key bits used in the beginning and final rounds. This allows us to significantly increase the differential probabilities and hence reduce the attack complexity. We validate the analysis by implementing the attack on LBlock reduced to 12 rounds. Finally, we apply single-key and related-key attacks on 18 and 21-round LBlock, respectively.
Resumo:
Background Some apple (Malus × domestica Borkh.) varieties have attractive striping patterns, a quality attribute that is important for determining apple fruit market acceptance. Most apple cultivars (e.g. 'Royal Gala') produce fruit with a defined fruit pigment pattern, but in the case of 'Honeycrisp' apple, trees can produce fruits of two different kinds: striped and blushed. The causes of this phenomenon are unknown. Results Here we show that striped areas of 'Honeycrisp' and 'Royal Gala' are due to sectorial increases in anthocyanin concentration. Transcript levels of the major biosynthetic genes and MYB10, a transcription factor that upregulates apple anthocyanin production, correlated with increased anthocyanin concentration in stripes. However, nucleotide changes in the promoter and coding sequence of MYB10 do not correlate with skin pattern in 'Honeycrisp' and other cultivars differing in peel pigmentation patterns. A survey of methylation levels throughout the coding region of MYB10 and a 2.5 Kb region 5' of the ATG translation start site indicated that an area 900 bp long, starting 1400 bp upstream of the translation start site, is highly methylated. Cytosine methylation was present in all three contexts, with higher methylation levels observed for CHH and CHG (where H is A, C or T) than for CG. Comparisons of methylation levels of the MYB10 promoter in 'Honeycrisp' red and green stripes indicated that they correlate with peel phenotypes, with an enrichment of methylation observed in green stripes. Conclusions Differences in anthocyanin levels between red and green stripes can be explained by differential transcript accumulation of MYB10. Different levels of MYB10 transcript in red versus green stripes are inversely associated with methylation levels in the promoter region. Although observed methylation differences are modest, trends are consistent across years and differences are statistically significant. Methylation may be associated with the presence of a TRIM retrotransposon within the promoter region, but the presence of the TRIM element alone cannot explain the phenotypic variability observed in 'Honeycrisp'. We suggest that methylation in the MYB10 promoter is more variable in 'Honeycrisp' than in 'Royal Gala', leading to more variable color patterns in the peel of this cultivar.
Resumo:
Estrogen increases the ability of the estrogen-dependent MCF-7 human breast cancer cell line to both proliferate and invade through an artificial basement membrane. In studying the response of MCF-7 cells to various antiestrogens, we found that 4-hydroxytamoxifen and tamoxifen inhibited cell proliferation but increased their invasiveness. In contrast, the structurally unrelated benzothiophene antiestrogens, LY117018 and LY156758, were potent antiproliferative agents which did not stimulate invasiveness. The differential effects of these antiestrogenic agents on invasion correlated with changes in production of collagenase IV, while no significant change was seen in the chemotactic activity of the cells. Invasiveness was increased by 17β-estradiol or 4-hydroxytamoxifen after a few hours of treatment and was rapidly lost when 17β-estradiol was withdrawn. Stimulation of invasiveness with 17β-estradiol was blocked by the antiestrogen, LY117018. Cells from the MDA-MB-231 line which lacks estrogen receptors were not affected by estrogen or antiestrogen in terms of proliferation or invasion. These studies indicate that the invasiveness of MCF-7 cells is regulated by antiestrogens through the estrogen receptor and may be mediated by collagenase IV activity. Antiestrogens which reduce both the proliferation and invasiveness of these cells may be interesting new candidates for clinical application.
Resumo:
The subiculum is the major output region of the hippocampal formation. We have studied pyramidal neurons in slices of rat ventral subiculum to determine if there is a correlation between nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity and electrophysiological phenotype. The majority of NADPH-d-positive pyramidal neurons were found in the superficial cell layer (i.e. nearest to the hippocampal fissure) of the subiculum and appreciable NADPH-d activity was absent from pyramidal neurons in area CA1. This distribution of NADPH-d activity was mimicked by that of immunoreactivity for the neuronal isoform of nitric oxide synthase. Subicular pyramidal neurons were classified, electrophysiologically, as intrinsically burst-firing or regular spiking. After electrophysiological characterization, neurons were filled with Neurobiotin and revealed using fluorescence immunocytochemistry. The slices containing these neurons were also processed for NADPH-d. NADPH-d activity was found in six out of eight regular spiking neurons but was not found in any of 13 intrinsically burst-firing neurons (P=0.0008, Fisher's Exact Test). We conclude that in rat ventral subiculum, NADPH-d activity is present in a proportion of pyramidal neurons and indicates the presence of the neuronal isoform of nitric oxide synthase. Furthermore, amongst pyramidal neurons, NADPH-d activity is distributed preferentially to those with the regular spiking phenotype. The distribution of regular spiking neurons suggests that they may not be present to the same extent in all subicular output pathways. Thus, the actions of nitric oxide may be relatively specific to particular hippocampal connections.
Resumo:
Bone sialoprotein (BSP), a secreted glycoprotein found in bone matrix, has been implicated in the formation of mammary microcalcifications and osteotropic metastasis of human breast cancer (HBC). BSP possesses an integrin-binding RGD (Arg-Gly-Asp) domain, which may promote interactions between HBC cells and bone extracellular matrix. Purified BSP, recombinant human BSP fragments and BSP-derived RGD peptides are shown to elicit migratory, adhesive, and proliferative responses in the MDA-MB-231 HBC cell line. Recombinant BSP fragment analysis localized a significant component of these activities to the RGD domain of the protein, and synthetic RGD peptides with BSP flanking sequences (BSPRGD) also conferred these responses. The fibronectin-derived RGD counterpart, GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro), could not support these cellular responses, emphasizing specificity of the BSP configuration. Although most of the proliferative and adhesive responses could be attributed to RGD interactions, these interactions were only partly responsible for the migrational responses. Experiments with integrin-blocking antibodies demonstrated that BSP-RGD-induced migration utilizes the αvβ3 vitronectin receptor, whereas adhesion and proliferation responses were αvβ5-mediated. Using fluorescence activated cell sorting, we selected two separate subpopulations of MDA-MB-231 cells enriched for αvβ3 or αvβ5 respectively. Although some expression of the alternate αv integrin was still retained, the αvβ5-enriched MDA-MB-231 cells showed enhanced proliferative and adhesive responses, whereas the αvβ3-enriched subpopulation was suppressed for proliferation and adhesion, but showed enhanced migratory responses to BSP-RGD. In addition, similar analysis of two other HBC cell lines showed less marked, but similar RGD-dependent trends in adhesion and proliferation to the BSP fragments. Collectively, these data demonstrate BSP effects on proliferative, migratory, and adhesive functions in HBC cells and that the RGD-mediated component differentially employs αvβ3 and αvβ5 integrin receptors.
Resumo:
It has been shown that abilities in spatial learning and memory are adversely affected by aging. The present study was conducted to investigate whether increasing age has equal consequences for all types of spatial learning or impacts certain types of spatial learning selectively. Specifically, two major types of spatial learning, exploratory navigation and map reading, were contrasted. By combining a neuroimaging finding that the medial temporal lobe (MTL) is especially important for exploratory navigation and a neurological finding that the MTL is susceptible to age-related atrophy, it was hypothesized that spatial learning through exploratory navigation would exhibit a greater decline in later life than spatial learning through map reading. In an experiment, young and senior participants learned locations of landmarks in virtual environments either by navigating in them in the first-person perspective or by seeing aerial views of the environments. Results showed that senior participants acquired less accurate memories of the layouts of landmarks than young participants when they navigated in the environments, but the two groups did not differ in spatial learning performance when they viewed the environments from the aerial perspective. These results suggest that spatial learning through exploratory navigation is particularly vulnerable to adverse effects of aging, whereas elderly adults may be able to maintain their map reading skills relatively well.
Resumo:
It has been well established that organic compounds with adjacent hydroxyl groups in Bayer process liquor can inhibit gibbsite precipitation by acting as seed poisons. The degree of inhibition is a function of the number and stereochemistry of the hydroxyl groups. Seed poisons generally adsorb strongly onto hydrate surfaces, implying that surface coverage is the mechanism for yield inhibition. There are examples however of organics that strongly adsorb but do not lead to yield inhibition. There is a possibility that this apparent contradiction may be an artifact of differences in conditions between the adsorption and precipitation experiments. The present work investigates the adsorption and inhibition effects of a range of compounds under strictly similar conditions to clarify the role of adsorption on yield inhibition.
Resumo:
Background Situational driving factors, including fatigue, distraction, inattention and monotony, are recognised killers in Australia, contributing to an estimated 40% of fatal crashes and 34% of all crashes . More often than not the main contributing factor is identified as fatigue, yet poor driving performance has been found to emerge early in monotonous conditions, independent of fatigue symptoms and time on task. This early emergence suggests an important role for monotony. However, much road safety research suggests that monotony is solely a task characteristic that directly causes fatigue and associated symptoms and there remains an absence of consistent evidence explaining the relationship. Objectives We report an experimental study designed to disentangle the characteristics and effects of monotony from those associated with fatigue. Specifically, we examined whether poor driving performance associated with hypovigilance emerges as a consequence of monotony, independent of fatigue. We also examined whether monotony is a multidimensional construct, determined by environmental characteristics and/or task demands that independently moderate sustained attention and associated driving performance. Method Using a driving simulator, participants completed four, 40 minute driving scenarios. The scenarios varied in the degree of monotony as determined by the degree of variation in road design (e.g., straight roads vs. curves) and/or road side scenery. Fatigue, as well as a number of other factors known to moderate vigilance and driving performance, was controlled for. To track changes across time, driving performance was assessed in five minute time periods using a range of behavioural, subjective and physiological measures, including steering wheel movements, lane positioning, electroencephalograms, skin conductance, and oculomotor activity. Results Results indicate that driving performance is worse in monotonous driving conditions characterised by low variability in road design. Critically, performance decrements associated with monotony emerge very early, suggesting monotony effects operate independent of fatigue. Conclusion Monotony is a multi-dimensional construct where, in a driving context, roads containing low variability in design are monotonous and those high in variability are non-monotonous. Importantly, low variability in road side scenery does not appear to exacerbate monotony or associated poor performance. However, high variability in road side scenery can act as a distraction and impair sustained attention and poor performance when driving on monotonous roads. Furthermore, high sensation seekers seem to be more susceptible to distraction when driving on monotonous roads. Implications of our results for the relationship between monotony and fatigue, and the possible construct-specific detection methods in a road safety context, will be discussed.
Resumo:
Purpose To investigate the effect of different levels of refractive blur on real-world driving performance measured under day and nighttime conditions. Methods Participants included 12 visually normal, young adults (mean age = 25.8 ± 5.2 years) who drove an instrumented research vehicle around a 4 km closed road circuit with three different levels of binocular spherical refractive blur (+0.50 diopter sphere [DS], +1.00 DS, +2.00 DS) compared with a baseline condition. The subjects wore optimal spherocylinder correction and the additional blur lenses were mounted in modified full-field goggles; the order of testing of the blur conditions was randomized. Driving performance was assessed in two different sessions under day and nighttime conditions and included measures of road signs recognized, hazard detection and avoidance, gap detection, lane-keeping, sign recognition distance, speed, and time to complete the course. Results Refractive blur and time of day had significant effects on driving performance (P < 0.05), where increasing blur and nighttime driving reduced performance on all driving tasks except gap judgment and lane keeping. There was also a significant interaction between blur and time of day (P < 0.05), such that the effects of blur were exacerbated under nighttime driving conditions; performance differences were evident even for +0.50 DS blur relative to baseline for some measures. Conclusions The effects of blur were greatest under nighttime conditions, even for levels of binocular refractive blur as low as +0.50 DS. These results emphasize the importance of accurate and up-to-date refractive correction of even low levels of refractive error when driving at night.